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Abstract

Understanding the core interconnections between network structure and dy-

namics is an essential step towards understanding brain function. Recent work

has revealed tantalising sketches of a class of principles governing the interplay

between network dynamics and topology. Experimental and numerical work on

the Stomatogastric Ganglion (STG) of the lobster has shown that a large, het-

erogeneous set of distinct three-neuron networks can exhibit similar collective

dynamics, despite significant differences in network topology and neuron param-

eters. Complementarily, theoretical work has shown that the dynamics of net-

works of leaky integrate-and-fire (LIF) neurons restricts the space of possible

networks onto a lower-dimensional manifold in the space of network topologies.

Here, I present numerical results that suggest that dynamics restricts permissi-

ble topology even for a biophysically-detailed model of the STG network. These

results reveal that the dynamical behaviour of the STG network is robust to

changes in network structure in some topological dimensions, but fragile in other

dimensions. Further, I describe different kinds of transitions from networks with

canonical dynamics to unorthodox networks with different dynamical metrics,

on moving through parameter space. The existence of these transitions provides

further evidence for the presence of a high-dimensional manifold on which all

networks dynamically identical to the canonical STG network lie. To disentan-

gle the effects of network topology from the complexity of the neuron model, I

study a simplification of this network based on the Kuramoto Model. Using this

simplified model, I demonstrate a method to reconstruct the effective coupling

strengths between neurons in a network by inducing small perturbations to the

limit cycle of the network.



1 Introduction

“There is nothing new to be discovered in physics now. All that remains

is more and more precise measurement” — attributed to Lord Kelvin [42]

1.1 Background

The Physics of the last century rests on two complementary processes: the toolbox of

analysis, that equips the physical scientist to describe a system mathematically, and

the framework of models, that allows her to understand the mechanisms underlying

observable behaviour. In Mechanics, this allowed for the development of analytical

tools that help predict how mechanical systems of known structure might behave.

Conversely, modelling facilitated the construction of a set of plausible hypothesis of the

constituents and function of a system, readily verifiable by experiment, and suggested

causal relationships between observable behavior and underlying mechanisms.

The Physics of our human-scale world is powerful enough, through analysis, to pre-

dict the behavior of a mechanical system of arbitrary structure. Through modelling,

it’s possible to predict the structure of a system from an arbitrary behavioral observa-

tion. Where classical physics fails, and thus, where current research is focused, is in

the ‘very large, the very small and the very complex’ [1]. Some of the most interesting

areas of current research in ‘the very complex’ are in the study of networks.

In contrast to the established success of physical theory in classical mechanics,

‘Network Science’ is in its infancy [2]. Networks are often studied as mathematical

objects called ‘graphs’. A graph is a collection of nodes, called vertices, and links

between these nodes, called ‘edges’ [17]. An edge may be directed or undirected, and

may have a weight, or strength [18, 10].

There is currently no fundamental theory that predicts the behavior of a dynam-

ical system on a network of arbitrary topology, nor is there a framework mediating
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Relating Topology and Dynamics in Neuronal Networks

Figure 1: Outline and Definitions. This study aims to reveal causal links from the topology

of networks to their dynamics, and mechanistic links from the dynamics of networks to their

structure. This mathematical structure is a ‘graph’, consisting of nodes, or ‘vertices’ connected

by links, or ‘edges’.

the relationship of classes of behavior a network exhibits to the structure it needs to

generate the behavior.

This is partly because networks are inherently difficult to understand, as can be

seen from Steven Strogatz’s list of potential complications with networks [41]:

1. Structural complexity: the connections between the nodes of a network can

be very complex. A neuronal cell in your brain may have up to 104 synapses with

other neurons [36], and brain architecture at the inter-cellular level is so complex

that little is known about it.

2. Network evolution: these connections can change over time. As you read this

sentence, connections are being made, broken or modified— some irreversibly—

between neurons in your brain.

3. Connection diversity: the ‘edges’ between nodes can have different weights,

directions and signs, or can be of different kinds. Synapses between neurons can

be strong or weak, inhibitory or excitatory, or can be electrical or chemical.

4. Dynamical complexity: the nodes can be nonlinear dynamical systems. In the

network presented in this study, each node is a 13-dimensional nonlinear system

with rich intrinsic dynamical behaviour.

5. Node diversity: there could be many different kinds of nodes. Though the

network presented here has only three nodes (neurons), they are all different.

11



1.2 Goals and Outline

As can be seen from these illustrative examples, neuronal networks are an intriguing

class of networks, displaying all the complexities inherent to networks. Neuroscience

offers some the most exciting problems in networks. Networks of neurons act on aston-

ishingly small time scales to process and store information, and are themselves shaped

by evolutionary processes on much larger time scales. Thus, while a fairly detailed

understanding of the structure and behavior of individual nodes of the network— the

neurons— has been achieved [59], this has not substantially contributed to our un-

derstanding of large neuronal networks like the brain, because a very large number of

neurons (≈ 1010) interact in extremely complex ways to produce collective dynamical

states that are poorly understood.

Thus, a good theory of brain function requires a good theory of networks.

1.2 Goals and Outline

The broad goal of this study is to link network topology and network behaviour, for-

mulated in two complementary questions: how does the topology of a network affect

its dynamical behaviour, and, conversely, given the dynamical behaviour of a network,

what can be said of its underlying structure? This thesis is structured around these

two questions.

The first question: how does network structure affect its dynamical behaviour?

Here, it is important to acknowledge that universalisms from network structure to

dynamics may not exist — the fine details of the dynamical system running on the

network do matter [41]. The dynamical behaviour of a network is a concatenation of

both network topology and details concerning the dynamics of nodes, as well as a host

of other parameters, like those governing interactions between nodes.

A significant contribution towards answering this question was made by Prinz,

Bucher and Marder. In a paper published in 2004, the authors show that similar

network activity can arise from a very heterogeneous set of networks with disparate

topologies and neuron parameters [32]. They demonstrate this for a three-neuron

model of the lobster Stomatogastric Ganglion (STG). The lobster STG is a small central

pattern generator that generates a characteristic triphasic bursting motor pattern (Fig.

3). Unlike many other experimentally accessible networks, whose connectivity is largely

unknown, the connections between the neurons in this networks is known [32].

The model consists of three neurons, each of a different type. By simulating ≈ 2x107

STG networks with different topological and neuronal parameters, and by parameter-

12
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Figure 2: Comparison of the objectives of this thesis to that of Prinz et. al. (a) Prinz et. al.

coarsely sample the space of possible networks, identifying networks that exhibit behaviour within

some region of allowed behaviour. (b) This study searches for a manifold within the space of

possible networks, such that every point (network) on that manifold displays a single behaviour.

ising the observed dynamical behaviour, the authors show that a large, heterogeneous

set of networks produces a bursting pattern indistinguishable from experimentally ob-

servable pyloric rhythms (See Figure 2).

The STG model neuron is described in Section 2.1, and the STG model network

in Section 2.2. Using the STG network, Section 3 will detail the central result of this

thesis: that the large, heterogeneous set of networks described by Prinz, Bucher and

Marder isn’t merely a collection of oddballs, but instead lie on a high-dimensional

manifold of all such dynamically-identical networks. In conjunction with theoretical

work on linear-integrate-and-fire (LIF) networks, where the existence of this manifold

has been shown [8], the results presented in this thesis suggest that a generic network

exhibiting some dynamical behaviour coexists, with all other dynamically-identical

networks, on a manifold in the space of network topologies. The implications of these

findings on are explored in Section 3.4.2.

Secondly, what constraints does the behaviour of a network impose on the its struc-

ture? Knowing the behaviour of a network, can we infer its structure? In Section 4,

it will be shown that constraints can be imposed on the space of network topologies

by its response dynamics. A theory of network reconstruction based on perturbation

analysis is introduced, and applied to networks of phase-coupled Kuramoto oscillators

and the lobster Stomatogastric Ganglion (STG).

13



1.2 Goals and Outline

The models used for the network of Kuramoto oscillators and the STG network

are described in Section 2. Following the failure to reproduce published results on

the STG network, a detailed analysis of the effects of choice of solver for the neuron

model is presented in Section 6.1. Further, the periodicity of the STG neuron model

is investigated in Section 6.2.

14
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2 Models

“No insight is gained if the model is as perplexing as the phenomena it is

supposed to describe. This is what makes mathematical modelling an art

as well as a science: An elegant model strikes just the right compromise

between simplicity and verisimilitude” — Steven Strogatz [50]

In this section, the neuron and network models used in this study are presented. After

the description of the STG neuron model in the following subsection, three of these

neuron models are ‘wired together’ with seven synapses, detailed in Section 2.2. The

neuron models are dynamically identical, differing solely in one set of parameters, i.e.,

their maximal membrane conductances. Thus the description of the STG network

adds to the neuron model only synaptic dynamics and parameters, and the neuron

parameters themselves, listed in Table 2. Finally, the Kuramoto Model of phase-

coupled oscillators is briefly described in Section 2.3.

2.1 The STG Neuron Model

The neuron model used in this study is a 13-dimensional electronically compact, con-

ductance based model [35]. This model is considered bio-physically detailed in that

several ionic currents are modelled, as is the intracellular calcium concentration. This

model was developed to faithfully replicate the bursting oscillatory nature of the neu-

rons in the STG network, and is based on experimental data obtained from lobster

Stomatogastric neurons [44], as described in detail in [5].

Each of the model’s membrane currents is described by

Ii = gim
p
i hi (V − Ei) A (1)

15



2.1 The STG Neuron Model

where A = 0.6238× 10
−3

cm2 is the membrane area, Ei is the reversal potential, and gi

is the maximal conductance of the ith ionic current. The reversal potentials are 50 mV

for Na+, 80 mV for K+, 20 mV for IH and 50 mV for Ileak. The reversal potential for the

Ca2+ currents are determined from the instantaneous intracellular Ca2+ concentrations

using the Nernst Equation:

Ei =
RT

nF
ln

[Ca2+]outside

[Ca2+]inside

(2)

where [Ca2+]outside = 3mM. The activation and inactivation variables mi and hi

change according to

ṁi =
m∞ − mi

τm
and ḣi =

h∞ − hi

τh
(3)

where m∞, h∞, τm and τh, along with the exponents pi are given in Table 1.

The membrane potential is governed by

V̇ =

∑

i Ii

C
(4)

where C = 0.628nF is the capacitance of the neuron. The rate of change of intra-

cellular calcium concentration

d [Ca2+]

dt
=

−f (ICaT + ICaS) − [Ca2+] + [Ca2+]0
τCa

(5)

where τCa = 200ms is the Ca2+ buffering time constant, f = 14.96M/nA maps the

Calcium current onto an intracellular concentration change [4], and [Ca2+]0 = 0.05M is

the steady-state intracellular Calcium concentration. Together, these thirteen coupled

differential equations (1-5) fully describe the dynamics of the neuron model.

These differential equations comprise a ‘stiff’ problem. A stiff set of equations is

a set of differential equations which is prone to numerical instabilities, when solved

by some numerical solvers, unless the step size is extremely small. In these equations,

the ‘stiffness’ of these equations is manifest in the very different timescales of action:

while intracellular concentration oscillates on a time scale of around one second, the

gating variables for some channels, and the membrane potential, can oscillate on a

millisecond time scale, e.g., during an action potential. Special methods are advisable

to solve stiff equations, like the Shampine-Reichelt-Kierzenka trapezoidal rule using

16
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Figure 3: (a) Pyloric rhythm recorded from H. americanus with intracellular electrodes. Adapted

from [32]. The canonical behaviour of the pyloric network is a triphasic rhythm with bursts

occurring in the order PD-LP-PY. (b) Graph representation of a simplified version of the STG

circuit. All synapses in the circuit are inhibitory. (c) Voltage traces from the model described

in the text. Vertical scale bars 10mV, horizontal scale bars 1s. Horizontal lines are at -60mV.

Definition of the four metrics (period, delay, gap, duration) used to characterise plyoric bursts

(red).

free interpolants [39].

However, to conform to the to the methodology used in previous work [35, 32,

5], the equations for the gating variables were integrated using the first-order Euler

method, and the equations for the membrane potential and the intracellular calcium

concentration were integrated with the exponential method described in Dayan and

Abbott [36].

An analysis on the various solvers (See Section 6.1 for a detailed presentation)

revealed that (1) the behaviour of certain neuron models in [32] could not be reproduced

(2) the exponential Euler method described in [36] produced the ideal compromise

between speed and precision. Thus, all simulations presented here were produced by

the exponential Euler method, with a fixed time step of 50µs unless otherwise specified.

The neuron models in isolation cover a full spectrum of dynamic behaviours, from

complete silence to regular spiking to periodic bursting. In general, AB/PD neurons

burst spontaneously, and induce phase-locked bursting in LP or PY neurons by post-

17



2.2 The STG Network Model

inhibitory rebounds [32].

2.2 The STG Network Model

The lobster STG is a small central pattern generator that generates a characteristic

triphasic bursting motor pattern (Fig. 3). In its simplest form, the pyloric rhythm is

produced by a pacemaker kernel consisting of the anterior burster (AB) neuron, which

is electrically coupled to two pyloric dilator (PD) neurons, and of two other neurons

types: a single lateral pyloric (LP) neuron and five to eight pyloric (PY) neurons [43].

The LP and PY neurons receive inhibitory glutamatergic synapses with fast dynamics

from the AB neuron, and inhibitory cholinergic synapses with slow dynamics from

the PD neurons [32]. The LP neuron feeds back to the PD neuron via an inhibitory

glutamatergic synapse. There are some reciprocal inhibitory connections between the

LP neuron and the PY neurons. All synapses in the STG are inhibitory.

The STG network is unique in the fact that it is a functional biological network

of known connectivity and stereotyped behaviour. Detailed bio-physically realistic

models of the STG network have been constructed [35, 32, 5] that effectively mimic

experimental observations. The model STG network is constructed according to Figure

3. All simulations assumed the neuron parameters given in Table 2. This choice

corresponds to neurons AB/PD#2, LP#4, PY#1, and the resulting network is labelled

(e) in Figure 3 in [32].

As previously mentioned, all three neurons are dynamically identical, differing only

in membrane conductance parameters (See Table 2). Thus, the specification of the

STG network dynamics now requires a specification of the synaptic dynamics to be

complete.

All synapses were simulated according to an established model of synaptic dynamics

[45]. The synaptic current is

Is = gss (Vpost − Es) (6)

where gs is the maximal synapse conductance, Vpost is the membrane potential of the

post-synaptic neuron and Es is the reversal potential of the synapse. The dynamics of

the activation variable s is given by

ṡ =
s̄ (Vpre − s)

τs
(7)
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Table 1: Voltage Dependence of Model Currents. The time constants τm and τh are in milliseconds, V is in millivolts, and the

intracellular Calcium concentration is in µM. m∞, h∞ and p are dimensionless

p m∞ h∞ τm τh

INa 3 1

1 + exp

„

V + 25.5

−5.29

«

1

1 + exp

„

V + 48.9

5.18

« 2.64 −

2.52

1 + exp

„

V + 120.0

−25.0

«

1.34

1 + exp

„

V + 62.9

−10

«

2

6

6

4

1.5 +
1

1 + exp

„

V + 34.9

3.6

«

3

7

7

5

ICaT 3 1

1 + exp

„

V + 27.1

−7.2

«

1

1 + exp

„

V + 32.1

5.5

« 43.4 −

42.6

1 + exp

„

V + 68.1

−20.5

« 210.0 −

179.6

1 + exp

„

V + 55.0

−16.9

«

ICaS 3 1

1 + exp

„

V + 33.0

−8.1

«

1

1 + exp

„

V + 60.0

6.2

« 2.8 +
14.0

exp

„

V + 27.0

10.0

«

+ exp

„

V + 70.0

−13.0

« 120 +
300

exp

„

V + 55.0

9.0

«

+ exp

„

V + 65.0

−16.0

«

IA 3 1

1 + exp

„

V + 27.2

−8.7

«

1

1 + exp

„

V + 56.9

4.9

« 2.32 −

20.8

1 + exp

„

V + 32.9

−15.2

« 77.2 −

58.4

1 + exp

„

V + 38.9

−26.5

«

IKCa 4 [Ca
2+]

[Ca2+] + 3

2

6

6

6

4

1

1 + exp

„

V + 28.3

−12.6

«

3

7

7

7

5

180.6 −

150.2

1 + exp

„

V + 46.0

−22.7

«

IKd 4 1

1 + exp

„

V + 12.3

−11.8

« 14.4 −

12.8

1 + exp

„

V + 28.3

−19.2

«

IH 1 1

1 + exp

„

V + 75.0

5.5

«

2.0

exp

„

V + 169.0

−11.6

«

+ exp

„

V − 26.7

14.3

«
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2.3 The Kuramoto Model

where

s̄ (Vpre) =
1

1 + exp

(

Vth − Vpre

∆

) and τs =
1 − s̄ (Vpre)

k_
(8)

where Vpre is the membrane potential of the pre-synaptic neuron, Vth is the threshold

voltage of the synapse, Δ determines the slope of the activation curve and k_ is the

rate constant for the rate of transmitter-receptor dissociation. AB, LP and PY are

glutamatergic neurons, whereas PD is cholinergic [48, 46, 47]. Thus, even though the

electrical coupling between AB and PD is modelled by collapsing them into a com-

mon AB/PD neuron, their output is modelled individually due to their non-identical

synaptic dynamics. The modelling of AB and PD by a single neuron neglects the time

constants of the electrical coupling between them, which, given their large membrane

capacitance, is significant. However, this provides a major simplification of the STG

network at a relatively small cost.

For glutamatergic synapses, Es = 70mV and k_ = 1/40 ms, and for cholinergic

synapses Es = –80 mV and k_ = 1/100 ms. For both synapse types, Vth = –35 mV

and Δ = 5 mV. These parameters are chosen to capture, to a first approximation, the

slow dynamics of cholinergic inhibitory post-synaptic potentials (IPSPs) and the fast

dynamics of glutamatergic IPSPs [49].

The maximal synapse conductance gs is taken to be a measure of the synapse

strength.

This model was initialised from a fixed initial condition specified in the STG model

neuron database [5]. The synaptic dynamical variables were set to 0. During each

simulation, the system was allowed to evolve for five seconds before observations were

made, in an attempt to free the observed dynamical behaviour of transient artefacts.

Simulations were written in the MATLAB language and complied binaries were run

on a varying number of AMD Opteron processors, each clocked at 2.4 GHz. The mean

speed of code execution at a temporal resolution of 50µs was about 20% realtime.

2.3 The Kuramoto Model

The Kuramoto model, first proposed by Yoshiki Kuramoto [34, 26], is a mathematical

model of a network of phase coupled oscillators. The model is a good approximation

20



Relating Topology and Dynamics in Neuronal Networks

Table 2: Neuron Parameters: Maximal Membrane Conductance Densities, in mS/cm2

for the three neurons in the STG network

g(INa) g(ICaT ) g(ICaS) g(IA) g
(

IK(Ca)

)

g(IKd) g(IH) g(Ileak)

AB/PD 100 2.5 6 50 10 100 0.01 0

LP 100 0 4 20 0 25 0.05 0.03

PY 100 2.5 2 50 0 125 0.05 0

for weakly coupled limit-cycle oscillators. This means that the time scales of motion

towards the limit cycle of each oscillator is far smaller than the time scale of the

oscillation itself.

This model describes a system of oscillators exhibiting two dynamics: an intrinsic

oscillatory dynamics specified by the intrinsic frequency of each oscillator, and a collec-

tive dynamics specified by the interactions of each oscillator with its neighbours. The

interactions are specified by coupling functions f, that are smooth and continuously

differentiable, and operate on the phases of the oscillators. The oscillators are located

on the nodes of a directed graph, and the presence of an edge between node i and node

j allows an interaction between the two oscillators. Thus, the rate of change of the

phase of each oscillator can be expressed as

φ̇i = ω0 +
N

∑

j=1

Jijf(φi − φj) (9)

where ω0 is the intrinsic frequency of each oscillator and Jij is the coupling constant

between i and j. In general, strongly connected networks with weak positive coupling

synchronise [26]. For inhibitory couplings, where Jij < 0 for all i, j, the system does

not synchronise but approaches a phase locked state characterised by N-1 independent

phase differences and a collective frequency Ω0 that is, in general, different from ω0.

Despite the fact that the Kuramoto Model is a one-dimensional, phase coupled sys-

tem, it provides a useful simplification of the STG network. Though the STG network

communicates via action potentials, in its functional state, the bursting nature of all

neurons depreciates the significance of each spike. Furthermore, each neuron behaves

like an oscillator for the STG network in its functional state. The intracellular Calcium

concentration rises nearly monotonically in each period, and a meaningful phase can

be extracted from it. Moreover, by mutual inhibitory coupling, the STG network in its

functional state achieves the ‘target’ pyloric rhythm, which can be meaningfully mea-
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sured by two phase differences. A network of three Kuramoto oscillators with negative

coupling whose coupling strengths approximate that of the STG network settles into a

phase locked stable orbit characterised by two independent phase differences.
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3 From Topology to Dynamics

“The greatest challenge today, not just in cell biology and ecology but in

all of science, is the accurate and complete description of complex systems.

Scientists have broken down many kinds of systems. They think they know

most of the elements and forces. The next task is to reassemble them, at

least in mathematical models that capture the key properties of the entire

ensembles.” — E.O. Wilson [40, 41]

The subject of this section is how a network’s topology affects its emergent dynamics.

A brief review of current research describes some general themes in high-dimensional

dynamical systems, like fragile-yet-robust behaviour, and the interplay between mi-

croscopic parameters and global dynamics. Section 3.2 presents a simple gedankenex-

periment, offering a deeper understanding of the structure of maps from topology to

dynamics of networks. The central results of this thesis are presented in Section 3.4,

offering evidence in support of the hypotheses made in Section 3.2.

3.1 What would a Network do?

In their 2004 paper, Prinz, Bucher and Marder [32] show that a very large number of

networks with different neuron parameters and network topology can exhibit a func-

tionally relevant pyloric rhythm. By simulating ≈ 2x107 networks coarsely spanning

the seven dimensional parameter-space of network topology and a subset of neuron

parameters, they show that a large number of networks (≈ 2.2%) show dynamical be-

haviour very similar to experimentally observed behaviour (See Figure 2). They suggest

that cellular and synaptic properties do not need to be tuned to achieve a target net-

work dynamic. Further, they posit that the collective dynamics of a network may be

more tightly regulated than lower-level parameters.
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Intriguingly, this theme is present in other high-dimensional systems, even in indi-

vidual neurons. Elliot et. al. [6] discriminate between how a sensory neuron’s preferred

operating point is set and how its preferred operating point is maintained through adap-

tation. They then suggest that a neuron varies its operating point such that it keeps

the probability density function of its output spike train invariant.

Figure 4: Construction of colourmaps of the parameter planes. Pairs of synapses are varied and

the metrics are computed from voltage traces. Voltage traces of AB/PD (a-e) show different

behaviours, from silence, to slow bursting to rapid bursting. The periods are shown in red.

The voltage traces are from values of Synapse # 7 of 0, 10,19,30 and 40 nS, with all other

synapses maintained at their default strengths. The location of the voltage traces is shown on

the colourmap on the right. The line corresponding to a strength of 30nS for Synapse # 1 has

been highlighted for clarity.

Goldman, Marder and Abbott [16] show that a neuron’s behaviour is robust in some

dimensions of parameter space, and fragile in others. Specifically, for a five-dimensional

neuron model, they explored its stability properties over a space of parameters spanning

neuromodulator action and conductance. They found slab-shaped regions of uniform

behaviour in this parameter space, such that moving parallel to the slab, equivalent to

a conductance shift, results in little change, and thus leads to its stability; and moving

perpendicular to the slab, an operation corresponding to the effect of neuromodulators,

24



Relating Topology and Dynamics in Neuronal Networks

leads to a dramatic change in the behaviour of the neuron.

Liu et. al. [4] address a similar problem when they introduce a model neuron

that tries to capture how real neurons have stationary activity despite rapid channel

turnover. They realise this process in a model where maximal conductances are allowed

to be controlled by three independent Calcium-driven feedback loops. They show

that perturbations to the steady state behaviour in this model cause an exponential

relaxation to a new state. On removing the perturbation, the system shifts to a new

state whose macroscopic properties are identical to the unperturbed state, but whose

microscopic states are distinct from those prior to the perturbation.

At a network level, Prinz et. al. [35] performed experiments where ‘artificial synap-

tic conductance’ pulses were injected into neurons. These pulses are defined by an

amplitude, corresponding to a synaptic strength, and a duration. They find that while

the phase response properties of a neuron changed in both dimensions, the response

properties saturate in the amplitude dimension, in contrast to the duration dimension,

where neuronal responses do not saturate. They identify the cause of this saturation

in their neuron model: inward currents at hyper-polarised potentials. Thus, saturated

responses suggest that changes in network topology are not always relevant, and that

these changes may have no further impact on network dynamics.

3.2 A Dynamical Systems Perspective

As with other cutting-edge research, the studies listed above have led to a large number

of open questions. Firstly, given that a wide variability exists in the dynamics of the

STG and other central-pattern generators, it is unclear if animal-to-animal variability

in network dynamics is a consequence or cause of regulation of sub-network elements

[15]. Secondly, while Prinz et. al. have shown [32] the existence of a large number

of networks that show pyloric behaviour, it is possible that this set is merely a set of

exceptions, implying that synapse parameters have to be ‘tuned’ to achieve a target

dynamic behaviour.

A simple gedankenexperiment puts the problem on a more formal footing. An

STG network N characterised by the set of weights of its seven synapses s0, exhibits

a characteristic asymptotic behaviour, that can be defined by a few metrics like the

period, delay, gap and duration (see Figure 3 for definitions) x0. Then, one of the

following is true:

1. The neighbourhood of the point s0 in the seven-dimensional space of synaptic
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strengths is the only set where N exhibits behaviour x0.

2. N exhibits behaviour x0 in a number of isolated points in parameter space.

3. N exhibits behaviour x0 in a manifold within this seven-dimensional space.

If (1) or (2) is true, then synaptic strengths have to be under very tight regulation

to achieve a target dynamic behaviour. However, there is reason to consider (3) over

the others. Firstly, Prinz et. al. [32] search the seven dimensional parameter space

of synaptic strengths at discrete strengths: 0nS, 1nS, 3nS, 10nS, 30 nS, and 100 nS.

Since these strengths are arbitrarily chosen, it is likely that an equally large number

of pyloric-networks are found with a different sampling of parameter space, suggesting

that tight regulation of synaptic strengths is not necessary for realising a target dynamic

behaviour.

The second argument’s intuitive nature sheds further light on the previous result.

Given that the space of parameters that a network is allowed to vary in, is higher

dimensional than the space of metrics used to quantify its behaviour, the mapping

from the high-dimensional set of networks to the low-dimensional set of dynamical

behaviours is generically many-to-one. A many-to-one mapping naturally precludes

(1).

Certain qualifiers apply here: for the purpose of this argument, both spaces are

assumed to be sampled at an equal number of discrete points, and have the same

‘extent’. Behaviors not falling directly onto sampling points in behaviour-space are

rounded to the nearest point. This corresponds to a finite tolerance in error in the

original study [32].1

The strongest argument for (3) comes from recent theoretical work on networks

of spiking linear-integrate-and-fire (LIF) neurons [8, 9]. The authors, Memmesheimer

and Timme, demonstrate that imposing a predefined spike pattern restricts the set of

permissible networks in a well-defined manner. For LIF networks, and for most spike

patterns, they show analytically that the space of permissible networks is restricted to

a lower dimensional manifold within the N(N-1) space of network parameters.

1Prinz et. al. define ‘pyloric’ networks as those where 15 metrics of behaviour are within the
experimental range, i.e., within two standard deviations of the experimental mean.
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Figure 5: Colourmaps of the ratios of periods of 78,141 networks to the period of the reference

network (red circle in magnified colourmap). These networks lie on planes in the space of synaptic

strengths, bounded by 0nS and 60nS. In every colourmap, green corresponds to 1. White areas are

networks with unorthodox dynamics. The strength of the synapse is expressed by gs in Equation

(6). The magnified colourmap shows the accordion transition described in Section 3.4, with

alternating bands of networks with canonical dynamics (green) and unorthodox dynamics (blue).
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Figure 6: Colour maps of the ratios of durations of 78,141 networks to the duration of the

reference network (red circle). All colourmaps as in Figure 5. The magnified colourmap shows

a complex transition described in Section 3.4, with areas of networks with canonical dynamics

(green) giving way abruptly to networks with unorthodox dynamics (white) in some dimensions,

while changing slowly in other dimensions (here, changing into yellow and red).
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Figure 7: Colour maps of the ratios of gaps of 78,141 networks to the gap of the reference

network (red circle). All colourmaps as in Figure 5. The magnified colourmap shows a transition

in two dimensions described in Section 3.4, with areas of networks with larger-than-canonical

dynamical metrics (red) giving way smoothly to networks with smaller-than-canonical metrics

(blue), while passing through a large band of networks with canonical dynamical metrics (green).
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Figure 8: Colour maps of the ratios of delays of 78,141 networks to the delay of the reference

network (red circle). All colourmaps as in Figure 5. The magnified colourmap shows dynamical

metrics changing smoothly along Synapse # 1, which connects AB/PD to LP. In contrast, the

effect of changing Synapse # 7 is more complex, as Synapse # 7 connects PY to LP, leading to

more complex network effects.

30



Relating Topology and Dynamics in Neuronal Networks

Figure 9: The ratios of all metrics of 78,141 networks to the ratios of the reference network

(red circle). The magnified plot compares the robustness of the two weak synapses, # 6 and #

3. While Synapse # 3 can be increased by an order of magnitude without significantly disrupting

the canonical dynamics, the network’s dynamics is fragile to changes in Synapse # 6.
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3.3 Pair-wise variation of synaptic strength

I now claim that case (3) is true for the STG network. Furthermore, I assume that

the analytical results proved by Memmesheimer and Timme [8, 9] hold in general. The

tactics used to substantiate these claims differ from those described above. An ana-

lytical approach à la Memmesheimer and Timme is not possible due to the intricate

dynamics of the neuron models and of the network. Moreover, performing a parameter

search in seven dimensions of a forty-nine-dimensional dynamical system is computa-

tionally prohibitive. Furthermore, Prinz et. al. measure the dynamical behaviour of

the ≈ 2x107 networks they simulate against a ‘fuzzy’ benchmark, i.e., the experimental

mean ±2 s.d. (See Figure 2). In addition, the set of ‘pyloric’ networks they identify

is a union of sets of networks of three distinct origins: sets of networks that show a

common behaviour due to topological factors, sets of networks that show a common

behaviour due to neuron parameters, and concatenations of the preceding two.

To summarize the results of Prinz et. al. [32], a search over a very broad parameter

space for dynamical behaviour with a low-dimensional, tolerant restriction led to the

identification of a large number of acceptable solutions.

Working on the assumption that the theory developed by Memmesheimer and

Timme [8, 9] apply to networks in general, rather than to some specific analytically ac-

cessible examples like LIF networks, I hypothesise that a manifold of at most n−1 = 6

dimensions that lies in the n-dimensional parameter space of the synaptic strengths

of the network, exists, and that every network on such a manifold exhibits the same

dynamical behaviour. I test for the existence of this manifold by varying synapses

in pairs and measuring the dynamical metrics of each network. Thus, for every pair

(si, sj) , s ∈ {0, ..., 60nS} , i, j ∈ {1, . . . , 7}, the corresponding network is simulated for

10 seconds, and the the period, duration, gap and delay (see definitions in Figure 3)

are computed from the voltage traces in the terminal 5 seconds.2

These metrics, computed at each point in parameter space, are compared to the

metrics of one canonical network. This canonical network was arbitrarily chosen to be

network (e) in Figure 3 in [32], which is shown to be ‘pyloric’. This canonical network

is fully specified by three sets of neuron parameters, and seven synapse strengths, given

in [32].

Since the focus of this thesis is to better understand how topology affects dynamics

in networks, the neuron parameters are not changed, and remain at the values specified

in Table 2 throughout this thesis. Thus, the canonical network is uniquely specified
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by its seven synaptic strengths: 30, 30, 3, 10, 30, 1, and 30 nS, listed in the order of

(arbitrary) synapse labelling in Figure 3. These synaptic strengths are represented by

gs in Equation 6.

To sum up, this approach allows the formulation of a stronger statement on topology-

dynamics relationships in the STG network, as all dynamical metrics are measured

against one chosen network with a single characteristic behaviour.

3.4 Simulation Results

Since each synapse was varied from 0nS to 60nS in steps of 1nS, and since there are a

total of seven synapses, pair-wise variation requires 21× 61× 61 = 78,141 simulations.

Most networks were ‘pyloric’, i.e., their triphasic bursting rhythm was within the vari-

ation of experimentally observables. The exceptions were networks where the entire

rhythm was disrupted, which typically occurred when Synapse #6 was increased.

The normalised metrics of all 78,141 networks are presented in Figure 5 (periods),

Figure 6 (duration), Figure 7 (gaps), and Figure 8 (delays). Each figure presents

the variation of one metric with all pairs of synapses being varied. For a pair of

synapses (i,j ), the colour-map in the ith row and the jth column is the representation

of 61×61=3721 simulations where this pair of synapses is varied independently from 0

to 60 nS. The metric of interest (e.g. the period in Figure 5) is then coloured according

to its ratio to that metric of the reference ‘canonical’ network. Across all colour-maps in

all figures, green is used to represent metrics within 1% of the metrics of the canonical

network. Red regions correspond to networks whose metric is larger, but within 10%

of the canonical metric, and blue areas correspond to networks whose metric is smaller,

but within 10% of the canonical metric. White areas denote networks that either do

not have a meaningful metric, due to a failure to display a pyloric dynamical state, or

whose metric is more than 10% away from that of the canonical network.

Figure 9 presents concatenations of all metrics for all 78,141 networks. Networks

shown in Figure 9 are those with all four metrics within either 2% (black) or 10% (gray)

of the reference network.

2The metrics are computed from the terminal half of the simulation to avoid transient artefacts.
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3.4.1 Patterns in Parameter Space

The main result of these simulations is that a large number of networks with behaviour

very close to that of the canonical network exist, and that these networks are not ran-

domly distributed on the parameter planes. Instead, networks with similar dynamics

are found in basins, lines, regions and points in the parameter planes.

This underscores the idea that the dynamics of the network is robust to changes in

some synapses (as shown in the lines and regions in some dimensions) but fragile to

changes in other synapses (as shown by the lines: moving perpendicular to the lines

rapidly destroys the observed dynamical state). An illustrative example of the latter is

the critical dependence on Synapse #6. Much of the parameter plane where one of the

axes is Synapse #6 is white, meaning that the network doesn’t exhibit the characteristic

triphasic burst of the STG network. In other words, significant variations Synapse #6

completely destroy the pyloric nature of the output. This is in excellent agreement

with earlier results from Prinz et. al.’s more coarse-grained parameter search, and

from experiments [32].

However, Synapse #6 is critical only on increasing its strength. In a more subtle

prediction not stated by [32], it can be seen (Figure 9, magnified plot) that in most

cases, Synapse #6 can be removed, preserving the functional output of the circuit

almost undisturbed. The functional and evolutionary consequences of a synapse that

is not essential, but whose strength cannot exceed an upper threshold, could be a

matter of considerable interest.

Clear and well-formed patterns in parameter space of networks that exhibit near-

identical dynamics (green dots in Figures 5,6,7 and 8) are seen for all metrics. This is

strong evidence in support of the claim that all networks that exhibit the same dynam-

ical state lie on a high-dimensional manifold in parameter space. Apart from networks

whose dynamical states are close to that of the canonical network (green, in every

figure), it is interesting to note that there are several other patterns of networks ex-

hibiting a different, common dynamical state. Bands of networks with higher, uniform

gaps can be seen coloured red in Figure 7. Large regions and lines of parameter space

contain networks with a shorter period, seen coloured dark blue in Figure 5. This isn’t

surprising: there’s nothing special about the dynamical state of the canonical network.

Just as there is a manifold in parameter space containing networks whose dynamics

map onto the dynamics of the canonical network, so are there other manifolds, con-

taining networks whose dynamical states correspond to some other, unknown, common
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reference.

3.4.2 Transitions in Parameter Space

Transitions of the dynamical behaviour of the network, from unorthodox (white) to

larger than canonical (red) to canonical (green) to smaller than canonical (blue) back

to unorthodox (white) are observed in these parameter planes. These transitions are

of some specific types:

1. Smooth transitions in one dimension: Dynamical metrics change smoothly

and almost monotonically in one dimension (one synaptic strength), while the

effect of changing the other synaptic strength is minimal. This can be seen

in Figure 7. Here, the gap metric changes smoothly along Synapse#1, and is

insensitive to all other dimensions (except Synapse#6).

2. Smooth transitions in two dimensions: Dynamical metrics change smoothly

and almost monotonically in a direction not parallel to the synaptic axes. This

can be best seen in the colour map of gaps (magnified in Figure 7) with Synapse#2

and #7 being varied.

3. Sharp cutoffs: Dynamical states change sharply from canonical to unorthodox.

The sharpness of this transition exceeds the resolution of the simulation (1 nS).

Every parameter plane involving Synapse #6 shows this: below the critical limit

of Synapse #6, dynamical states are characterized by near-canonical metrics.

Above this limit, the entire pyloric rhythm breaks down. (Figures 5,6,7 and 8)

4. Complex accordion transitions: Multiple, often bent bands of canonical net-

works, interleaved with bands of higher or lower metrics, are seen in the parameter

plane. Examples of this can be seen in the periods of Synapse#4 (Figure 5). This

may indicate that the manifold ‘ripples’ in higher-dimensional parameter space,

as a two-dimensional section through a ripple would show interleaved bands of

canonical and unorthodox networks, like an accordion.

5. Higher-order transitions: More complex transitions, as seen in the durations,

varying Synapse #3 and #2. This may indicate oblique intersections of the

manifold with the parameter plane. Since only two parameters are varied in each

experiment, the true structure of the manifold cannot be precisely determined.
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However, the presence of these transitions indicates the high-dimensional nature

of the manifold. This is shown magnified in Figure 6.

What do these transitions mean? Firstly, their presence, especially that of the higher-

order transitions and complex accordion transitions, is additional evidence for the

existence of a manifold on which all dynamically identical networks lie.

Smooth transitions in two dimensions suggest that one synapse can compensate for

another, not necessarily in a linear manner. If the lobster STG network has mecha-

nisms that regulate such a transition, the network is substantially robust to changes in

synaptic conductances, caused, say, by injury.

The existence of complex accordion transitions suggests some intriguing behaviour.

If the strength of Synapse#4 is ‘tuned’ from 60nS to 0nS, (imagine moving on a line

parallel to the abscissa in the magnified plot in Figure 5) the target canonical dynamics

disappears initially, then reappears on decreasing the strength further, then disappears

again, and so on. If one were unaware of this transition, this behaviour would appear

perplexing.
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4 From Dynamics to Topology

“As coupled oscillators, women are far subtler than fireflies” — Steven Stro-

gatz [50]

To close the loop between network structure and dynamics, methods to predict the

structure of a network, given its dynamical behaviour, need to be developed. In this

section, a few chosen methods to reconstruct networks (genetic, neuronal and sociolog-

ical) are briefly presented. In Sections 4.2.1 and 4.2.2, a method described by Timme

in [28, 11] will be introduced and refined, and demonstrated to reconstruct the effective

coupling strengths of a network of Kuramoto oscillators.

4.1 Network Reconstruction: An Overview

Network reconstruction is a topic of interest to systems biologists seeking to understand

the interplay of the complex network of genes, metabolites and proteins in a cell. Kim

et. al. [20] model the dynamics of gene networks using a system of coupled differential

equations, and propose a method to infer the structure of the network from time-series

of gene expression. They demonstrate this technique to reconstruct the gene network

in the budding yeast cell cycle, and show that, at least in synthetic gene expression

data, the method works even in the presence of noise and delays.

While this technique is passive, requiring only a set of time series from the system,

‘active’ methods based on perturbation theory have also been developed. Gardner et.

al. [21] induce transcriptional perturbations to the relaxation dynamics of gene con-

centrations to their fixed point to reconstruct a nine-gene sub-network in Escherichia

coli. A similar approach is used by Dharmadi et. al. [12], with the development of a

modelling tool they call Elementary Network Reconstruction (ENR). By ignoring the

dynamics of gene expression levels, and by focusing on their steady-state solutions,
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Dharmadi et. al. reconstruct the gene interaction network by inducing perturbations

to the steady state gene expression levels, and use Taylor series expansions around the

unperturbed state to build models of the perturbations.

Tegner et. al. [29] underscore the importance of micro-array technology in re-

constructing large gene networks. The demonstrate that the perturbation of a few key

genes is sufficient to reveal the structure of the gene network. Their approach, like that

of Dharmadi et. al. [12] and Gardner et. al. [21], focuses on the steady state values of

gene expression levels, as the determination of transient dynamics in gene expression is

still a technical challenge. To summarise, the four methods sketched here attempt to

reconstruct genetic networks either by using information theoretic measures, like Kim.

et. al., or via linear perturbation theory, as in Dharmadi et. al. [12], Garnder et. al.

[21], or Tegner et. al. [29].

It is important to state that methods of network reconstruction are constrained

by the limitations of access to the network at hand. Thus, while some methods may

work for some systems, others are more suitable for systems differing in experimental

accessibility, size or dynamical complexity.

While multi-unit recording systems like flat multi-electrode arrays provide access

to many dimensions of a cultured neuronal population, deciphering its structural and

functional connectivity is a non-trivial matter. Makarov et. al. [3] present a method

to create a model of a neuronal network using extracellular spike recordings. Their

approach is straightforward: they create a deterministic model of a spiking neuronal

network, and tune the model’s parameters by stochastic optimisation till the dynamic

behaviour of the model fits experimental data well. Using this approach, they are able

to predict, to some degree of approximation, spikes in the future from the real neuronal

network.

Kramer et. al. [23] study the uncertainty of edge likelihood in reconstructed net-

works, where edges in their reconstructed network are generated by functional con-

nectivity in a multivariate time series exceeding some predetermined threshold. Since

there is uncertainty in the measurements of a network induced by the limitations of

experimental design, they suggest that it is important to include a measure of this

uncertainty into the models of networks that are reconstructed. Thus, the output of

their procedure consists of both the reconstructed network and a quantification of un-

certainty of the number of edges. They apply this technique to electrocorticogram data

from a human during an epileptic seizure.

Another approach to quantify the uncertainty in network reconstruction is presented
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by Guimera et. al. [22]. Without assuming complete reliability of available network

data, they present a mathematical framework to reliably identify both missing and

spurious interactions in noisy and unreliable observations of network dynamics. They

further show that their approach is powerful enough to reconstruct networks from

noisy observations that are closer to the ‘true’ network than the noisy observations

themselves.

This overview of network reconstruction will conclude with two abstract methods to

reconstruct networks of coupled oscillators, modelled by the Kuramoto system. Arenas

et. al. [33] demonstrate a method to reconstruct the community structure of a network

by measuring how fast sub-graphs within the network synchronise. The idea is that

densely connected communities in a larger network synchronise first. They show that

well-defined modular structures, characterised by distinct topological scales, emerge

at different time scales, allowing for a partitioning of the graph into communities.

However, they stop there, and do not attempt to reconstruct the entire network based

on speeds of synchronisation.3

Zanette [27] introduces a method to reconstruct a network of Kuramoto oscillators

in the fully synchronous state by inducing an external perturbation to one node. By

showing that the response of each oscillator is well-defined function of its distance from

the perturbation, Zanette suggests that the network may be reconstructed by inducing

a set of perturbations on different nodes in the network.

4.2 Reconstructing networks...

The focus of this section will be based on a method for network reconstruction first

described by Timme [28, 11]. It is detailed and refined for the Kuramoto system, and

it is hoped that that it can be used to reconstruct the network for the lobster STG.

This network reconstruction method assumes that the network is composed of a

system of oscillators as in the Kuramoto Model, and that the network settles into

a phase-locked attractor that is at least stable to small perturbations. In contrast

to Zanette’s method, a fully synchronous state of the network is not required. The

assumption of a phase-locked attractor is hoped to be reasonable for the STG model,

as in the functional STG system, each neuron acts as an oscillator, and the pyloric

3Preliminary studies show that it may be possible to reconstruct an undirected network simply by
measuring the speeds of synchronisation between nodes. Naturally, this technique only works with a
initial conditions close to the synchronous attractor.
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rhythm is defined by characteristic phase differences between the neurons. However,

before attempts are made to reconstruct the real pyloric net, the reconstruction was

tested on the a simpler mimic, with the Kuramoto model running on a graph with

equivalent edge weights.

4.2.1 ...with N experiments

Timme [11] described a method to reconstruct the effective coupling constants of a N -

node network by performing at most N experiments, where all the neurons are driven

by an arbitrarily chosen current vector Īm for the mth experiment. Thus, the current

to the ith neuron in the mth experiment is Ii,m. Thus the dynamics of the ith neuron is

given by

φ̇i = ω0 +
N

∑

j=1

Jijf(φi − φj) + Ii,m (10)

For the undriven condition, Īm = 0, and the system settles into a phase-locked cycle

characterised by a collective frequency Ω0 and N-1 independent phase offsets

∆ji,0 = φj,0 − φi,0 (11)

which is time-invariant. The driven system is equivalently characterised by a col-

lective frequency

Ωm = ω0 +
N

∑

j=1

Jijf(φi − φj) + Ii,m (12)

and phase offsets ∆ij,m = φj,m − φi,m. If the driving currents are sufficiently small,

then the perturbed phase locked cycle is close to the original limit cycle:

|(φi,m − φj,m) − (φj,0 − φi,0)| $ 1 (13)

Taking the differences for the phase-locked conditions for the driven and undriven

systems, we get

Di,m =
N

∑

j=1

Jijf(φi,m − φj,m) − f(φj,0 − φi,0) (14)

where Di,m = Ωm − Ω0 − Ii,m. For sufficiently small perturbations, equation (13)
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holds, and we approximate f(φi,m −φj,m) = f(φi,0 −φj,0)+ f ′(φi,0 −φj,0)(∆ij,m −∆ij,0)

. Thus, equation (14) can be rewritten as

Di,m =
N

∑

j=1

Ĵijθj,m (15)

where θj,m ≡ φj,m − φj,0 and Ĵij is a Laplacian matrix given by

Ĵij =







Jijf ′(∆ij,0) i &= j

−
∑

k,k #=i Jikf ′(∆ki,0) i = j
(16)

For each experiment, N-1 independent phase offsets and one collective frequency

Ωm are obtained, yielding N linear equations that restrict the N2-dimensional space

of possible network topologies. Thus, after performing M=N experiments, the space

of networks is restricted to exactly one, and the effective coupling strengths can be

deduced by

Ĵij = DΘ−1 (17)

where Θ is the N × N matrix of all θ.

As demonstrated earlier [28], even large networks can be efficiently and accurately

reconstructed. However, for N=3, and the connection strengths proportional to synap-

tic conductances of the STG network, this method failed. Specifically, it did not suc-

ceed in identifying the ‘synapse’ that was absent, and failed to estimate the absolute

strengths of the individual synapses. This problem was traced to the fact that the

matrix Ĵ generated by the algorithm was no longer Laplacian. Nothing in Equation

(17) specifies the Laplacian constraint on Ĵ .4

To circumvent this, I exploited a further degree of freedom in θ, the matrix of phase

offsets. Adding a constant to a row in θ changes θ, as it is a different matrix. However,

this operation still represents the same physical system.

Based on this idea, I scanned the N -dimensional space of phase offsets for a θ

that yielded a set of solution matrices Ĵij that is as close, in Euclidean norm, to the

Laplacian as required. The ‘correct’ solution was identified among this solution set by

picking the solution that corresponded to the smallest differences among D.

While this is an ad-hoc numerical recipe to reconstruct small networks, it is awk-

4Interestingly, this problem becomes less relevant with increasing N. With N=32, a fairly good
reconstruction was achieved because most of the matrices returned were Laplacian.
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Figure 10: Reconstructing a 32-neuron network of Kuramoto oscillators. (a) Colourmap of the

reconstructed connectivity matrix of the network. (b) Absolute differences between reconstructed

and actual network. Note the magnified scale. The reconstruction is carried out according to

Section 4.2.2.

ward and mathematically unsound. In addition, it isn’t clear if multiple solutions are

permitted, or even possible.

4.2.2 ...with N-1 experiments

To clear away these ambiguities, the theory is reformulated as follows.

For the undriven system, the dynamics of the phase variable are given as before by

φ̇i = ω0 +
N

∑

j=1

Jijf(φi − φj) (18)

This system settles asymptotically into a phase locked attractor, characterised by

N-1 independent phase offsets and a single collective frequency Ω0. Without loss of

generality, we measure these phase offsets w.r.t the first neuron:

∆j,m = φj,m − φ1,m (19)

for mε {0, 1, . . . , N − 1} and jε {1, 2, . . . , N}. Now, when the system is driven with

some current vector Īm, the asymptotic dynamics of the phase variable follow
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φ̇i,m = ω0 +
N

∑

j=1

Jijf(φi,m − φj,m) + Ii,m

= ω0 +
N

∑

j=1

Jijf(∆i,m − ∆j,m) + Ii,m

= ω0 +
N

∑

j=1

Jij [f(∆i,0 − ∆j,0) + f ′(∆i,0 − ∆j,0)((∆i,m − ∆j,m) − (∆i,0 − ∆j,0))] + Ii,m

= Ω0 +
N

∑

j=1

Ĵij((∆i,m − ∆j,m) − (∆i,0 − ∆j,0)) + Ii,m (20)

where elements in Ĵ are products of the coupling strength and the derivative of the

coupling function evaluated at the asymptotic phase difference.

Ĵij = Jijf
′ (∆i,0 − ∆j,0) (21)

On performing N-1 experiments, all N(N-1) off-diagonal elements of Ĵ can be com-

puted from

Λ = J̄P (22)

where Λ is a N by N-1 matrix containing the frequency components

Λi,j = Ωm − Ω0 − Ii,m (23)

and P is a square matrix of size N-1 containing the phases offsets δij,m = (∆i,m −

∆j,m) − (∆i,0 − ∆j,0) and J̄ is a N by N-1 matrix of off-diagonal terms of J specified

by

J̄ =













J12f ′(∆1,0 − ∆2,0) ... J1Nf ′(∆1,0 − ∆N,0)

−
∑

J2jf ′(...) J21f ′(...) ...

J31f ′(...) ... ...

... ... −
∑

JNjf ′(...)













(24)

J̄ is merely a reordering of the off-diagonals of Ĵ to explicitly specify the Laplacian

restriction on Ĵ . Thus all off-diagonal elements of the network are reconstructed with N-

1 experiments. This can be understood intuitively by the fact that an N -node network
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that settles into a phase locked state is formally an N-1 dimensional system, as the

interaction terms can be rewritten in terms of the N-1 independent phase differences.

How does this remove the ambiguities in the earlier formalism? The crux of the

matter is in the explicit reformulation of Ĵ as a N by N-1 dimensional matrix, which

removes the diagonal (self-coupling) terms of the adjacency matrix. This analytical

constraint is the exact version of the numerical trick described in Section 4.2.1.

For the Kuramoto system with weak positive couplings, sine interaction functions

and uniform intrinsic frequencies, the attractor of the undriven system of a generic

network is the fully synchronous state. Thus the pre-factors f ′(∆i,m−∆j,m) are simply

1. This means that the matrix of reconstructed effective coupling strengths is very

close to the matrix of actual coupling strengths J, leading to a good reconstruction of

the network.

A reconstruction based on this theory is shown in Figure 10. Panel (a) shows

the reconstructed 32-neuron network, and panel (b) shows the differences between the

reconstructed network and the real network.

4.2.3 Reconstructing Inhibitory Networks

However, for inhibitory networks, the synchronous state is no longer stable. Specifically,

for a three-neuron network with global, uniform, negative coupling, the attractor is

characterised by |∆1,0| = |∆2,0| = 2π/3. This means that (1) the pre-factors are

no longer necessarily close to 1, and (2) the strength of the pre-factor may obscure

the strength of the coupling constant. In the most extreme case, Ĵij = 0 because

f ′(∆i,0 − ∆j,0) = 0, thus preventing any estimation of Jij.

Thus, even when the coupling function is known, as in the Kuramoto Model, it

is not possible to predict the network’s structural connectivity, though the network’s

functional connectivity can be revealed as before. Structurally, the only prediction

possible is the absence of a synapse, but even that cannot guarantee an absence of

false positives.

Some subtle differences in inhibitory networks are worth mentioning. While the

standard Kuramoto system with positive couplings and uniform frequencies eventually

synchronises and oscillates with a collective frequency given by ω0, the inhibitory Ku-

ramoto system, apart from failing to synchronise, settles into a collective phase locked

state whose frequency typically differs form ω0. This is because a failure to synchronise

implies a set of phase differences between the neurons that are not all zero. The effect
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of f on these phase differences is typically non-trivial, leading to a collective frequency

different from ω0.

Figure 11: Phase Portraits of four Simulations of Neuron AB/PD # 3, displaying aperiodicity

of this neuron model. (a) Using the exponential method described in Dayan and Abbott [36] (b)

Using the Hybrid method described in Prinz et. al. [35] (c) Output from the Simulator provided

by Prinz et. al. [5] (d) Using the ode23t solver in MATLAB. All phase portraits are for 10

seconds. (a) and (b) use a step size of 50 µ s.
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4.3 Reconstructing the STG network

4.3 Reconstructing the STG network

The primary purpose for introducing the network of Kuramoto oscillators was to de-

velop a simplified model of the STG network on which methods to reconstruct networks

could be tested. As detailed in Section 4.2.2, this method can reconstruct the effective

coupling strengths of a network of N oscillators in N-1 experiments.

However, attempts to reconstruct the STG network based on these methods failed.

This was due to the fact that the STG network, and the neurons in isolation, exhibited

aperiodic dynamics. Evidence for the aperiodicity of a single neuron is presented in

Figure 11. Phase portraits of four simulations of Neuron AB/PD #3, using different

numerical methods, show that trajectories form a dense band, and do not superimpose,

showing that, at least for the best numerical methods available, the neuron does not

show periodic behaviour.

The methods described in Section 4.2.2 require the periodicity of individual neurons

and the periodicity of the network. The STG network fails to achieve either. A more

detailed discussion of the aperiodicity of the neuron model, is given in Section 6.2.
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5 Conclusion

“Any sufficiently advanced technology is indistinguishable from magic.”

—Arthur C Clarke

The study of networks is still in that embryonic stage where much of the function and

effects of networks amaze, rather than illuminate. However, like the evolution of all

sciences, amazement leads to questions, and with the slow but inevitable answering

of questions, awe gives way to comprehension. Stanley Milgram’s famous experiment

demonstrating ‘six degrees of separation’ between any two people in the world [52, 51]

brought the concept of ‘small worlds’ to a scientific and lay audience, and prepared

the stage for founding a theory of small-world topology [53]. Network structures first

observed in sociology were rediscovered in the brain [55, 54].

The study of networks is important in several crucial ways. From formulating

theories of social dynamics and economic theories based on experimentally testable

models, to understanding brain dynamics, network science is at the forefront of many

fields of research. The Singularity, the point in human history when the creation of a

self-replicating exponentially growing autonomous intelligent system is possible [56, 57],

may not be reached without a deep understanding of how our brains work [58].

That said, this thesis presents a small understanding of the core interrelations

between network structure and dynamics. I have shown that principles governing the

relationship between network topology and dynamics, proved for simpler systems, hold

even for the biophysically-detailed model of the STG network of the lobster. Given

previous theoretical results [8, 9] and the work presented here, it seems likely that most

networks, irrespective of topological constraints or node dynamics, obey similar rules.

The consequences of the results presented in Section 3.4 are intriguing in a biological

setting. Given the existence of this manifold of dynamically-identical networks, it is

clear that regulatory systems on the network have a variety of mechanisms by which

behavioural output of the STG can be controlled. The large extents of these manifolds
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underscore the robustness of the STG network to random perturbations of structure.

At the same time, the fragility of the dynamical output to increases in strength of

Synapse#6 may suggest the existence of a ‘switch’, where the varying of a single

parameter — the strength of Synapse#6— by a small amount can switch the network

between functional and nonfunctional states.

Some questions linger: is the sharp cutoff seen on increasing Synapse#6 a true

phase transition, or is the transition steep but smooth? Sampling of the parameter

plane at a higher resolution may resolve this. While this thesis has described how some

differently-structured networks might behave, the question of how the network might

evolve has been neglected. Specifically, how do the neurons make initial connections

and self-organise to a functional network? How do the manifolds control the trajectory

of the evolving network through parameter space? Could a random walk through

parameter space efficiently find a point on the manifold corresponding to the target

dynamics?

Further, I have demonstrated and refined a technique to reconstruct networks,

making only minimal assumptions on its structure. Since this technique perturbs the

network’s dynamical system from its limit cycle, a functional understanding of its

structure can be obtained. For systems like the a network of Kuramoto oscillators, this

method can reveal the functional connectivity of the network.

Given recent advances in optical imaging techniques and optogenetic means of per-

turbing a neuron, it may be possible to reconstruct the effective coupling strengths of

a network of oscillatory neurons that are otherwise inaccessible. Such an experimental

technique would provide direct methods to study real, neuronal networks in function-

ing states. A first step would be to test the reconstruction methods described here on

a simpler model of the STG, for example, one based on the Hindmarsh-Rose bursting

neuron model [38].

Of Steven Strogatz’s list of complexities [41] that networks can exhibit, (in Section

1.1 of this thesis), theories in Network Science typically ignore most of them, to focus

on one type of complexity. For example, the theory of reconstruction of networks

presented in Section 4.2.2 uses the Kuramoto Model, thus circumventing additional

layers of complexity: network evolution, connection diversity, dynamical complexity

and node diversity, to focus solely on the structural complexity of the network. While

such approaches provide good lines of attack to the problems in Network Science, the

ultimate goal is to develop theories powerful enough to deal with all these types of

complexities.
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6 Appendix

6.1 A Note on Neuron Models

Over the course of the development of the STG model, Prinz et. al., the authors of

[35, 32, 5] have used different approaches to solving the differential equations governing

the dynamics of the STG neuron. In their first paper on the subject, they use Euler’s

method, presumably of first order, with a time step of 25 µs [35]. In another paper

published later that year [5], they introduce and implement the hybrid method, where

the gating variables are integrated with Euler’s method (with a time step of 50 µs) and

the voltage and Calcium concentration are integrated using the exponential method of

Dayan and Abbott [36].In their latest paper on the subject [32], they state they used

the exponential Euler method, presumably using this method to integrate all dynamical

variables.

However, they do not use more sophisticated methods like the 4/5-Runge-Kutta

method or methods developed for solving ‘stiff’ equations like the Shampine-Reichelt-

Kierzenka trapezoidal rule using free interpolants [39]. It was observed that explicit

methods (like exponential Euler, hybrid or Euler) ran up to 100 times faster that

implementations of the ode45 or ode23t ODE solvers (which correspond to the Runge-

Kutta 4,5 and Shampine-Reichelt-Kierzenka methods) in MATLAB. In simulating a

very large number of networks, speed may be more crucial factor than precision.

A comparison of all the methods listed above in simulating neuron LP#4 (whose

parameters are specified in Table 2, adapted from [32]) sheds light on both the perfor-

mance of these methods and the methods apparently used by Prinz et. al.

The benchmark for precision is the Shampine-Reichelt-Kierzenka method [39], im-

plemented in the ode23t solver in the MATLAB framework. Runge-Kutta methods,

especially the 4th-order Runge-Kutta method fail due to the ‘stiff’ nature of the prob-
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Figure 12: Numerical Instabilities and precision of solvers for neuron LP # 4 (parameters

specified in [32], model described in Section 2). The plot on the left shows the firing rate

reported by different solvers at varying time steps. The time step axis does not apply to the

ode23t solver, or to the simulation from Prinz et. al. [5]. The plots are: exponential Euler (red

dots), hybrid method (black dots), first-order-Euler (blue dots). On the right are three voltage

traces for LP # 4 for one second, plotted on the same scale. The black trace is the output from

Prinz et. al.’s simulation [5]. Green and blue are from the Hybrid solver. The coloured arrows

indicate the positions of the three traces in the plot.

lem. Figure 12 shows a comparison of the performance of ode23t, exponential Euler

(red dots), hybrid (black dots), and Euler methods (blue dots) to a simulation from

Prinz et. al. [5]. The temporal step sizes of ode23t and the Prinz et. al. simulation

can’t be varied, the former by design and the latter due to the non-disclosure of source

code. For all other methods, the step sizes are varied from 10µs to 200µs.

First, the robust nature of the exponential Euler method is clear. Even at very

large step sizes, the exponential Euler method (red dots) varies minimally from the

solution at much higher temporal resolutions. Furthermore, the exponential Euler

method approaches the ‘real’ solution, hereby assumed to be given by the Shampine-

Reichelt-Kierzenka method (ode23t).

Secondly, it is startlingly clear that while all methods — even the Euler — approach

a firing rate between 22-23Hz, the simulation from Prinz et. al. is much lower, at

7.27Hz. The convergence of four different methods strongly suggests that the ‘true’

firing rate of neuron LP#4 is ≈23Hz.
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This leads to puzzling questions about the implementation of the methods used by

Prinz. et. al. in [32, 5, 35].

The firing rate suggested by the exponential Euler method is over three times the

firing rate reported by Prinz et. al., over a very broad range of solver time steps. Both

the Hybrid method and the Euler method, at a time step of 50µs, fail to report the

firing rate of LP#4 as even close to 7.27Hz, the frequency reported by Prinz et. al.’s

simulation application.

More worryingly, there is reason to believe that this unknown, irreproducible method

was used in their paper involving 2x107 network simulations [32], leading to irrepro-

ducible behaviour in the networks they report. The first network (a) in Figure 3 in [32]

clearly shows LP#4 firing at approximately 7Hz. Since AB/PD and PY are silent in

this network, a simulation of this network is equivalent to the simulation just LP#4, for

LP#4. The authors of this paper state that they used the exponential Euler method

to simulate these networks [32]. This is in contradiction to the results presented here,

where LP#4, solved with the exponential Euler method, never dropped below 20Hz,

even at very large time steps.

Without access to the source code behind their simulation application (which is a

Microsoft Windows-only executable), the only conclusion that can be drawn from the

irreproducability of Prinz et. al.’s simulation is that there is a contradiction between the

method and time step presumably used and the output of their simulation application.

6.2 Aperiodicity of Neuron models

The main reason attempts to reconstruct the STG network from their phase responses

failed was due to fact that the network is not strictly periodic.

Some elaboration is needed here. The STG network is periodic in the sense that

inter-burst intervals have a well-defined mean, as do various other metrics. However, it

is not periodic in the dynamical systems sense of the term. A system S with dynamical

variables (s1, s2, . . . , sn) is periodic and has a period T if, for all t and i,

si (t + T ) = si (t) (25)

In this sense, neither the network nor individual neurons exhibit periodic behaviour.

This variation from periodicity is not uncommon in high-dimensional systems. Figure

11 shows phase portraits of a single variable, the voltage, of the spontaneously burst-
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ing neuron AB/PD #3, illustrating this aperiodicity. The large voltage excursions

correspond to action potentials, and the inter-burst evolution is captured in the nearly

vertical parts of the trajectory. In a single ‘period’, the neuron circles the origin n

times, where n is the number of spikes fired every burst.

Two things stand out in the phase portraits. First, the aperiodicity of the neuron

is evident in the dense tangle of trajectories. If the neuron was periodic, trajectories of

individual spikes would superimpose. Secondly, it is clear that all the explicit methods

(exponential Euler, Hybrid, and the simulation from Prinz et. al.) show artefacts in

the upstroke of the action potential, due to the finite time step of the solver. The

Shampine-Reichelt-Kierzenka method (ode23t) is artifact-free, even in the extremities

of steepest increase in V. However, all simulations show that the trajectory does not

superpose, a signature of aperiodicity. Note that, despite the dramatic differences in

the V̇ dimension, the range of V is identical.
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