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Insects find food and mates by navigating odor plumes that can be

highly intermittent, with intensities and durations that vary rapidly

over orders of magnitude. Much is known about olfactory responses

to simple pulses and steps of odor, but it remains unclear how Ol-

factory Receptor Neurons (ORNs) detect the intensity and timing of

natural signals, where the absence of a characteristic scale in the stim-

ulus makes detection a formidable task.

Here we propose a method by which odorant signals with naturalis-

tic and Gaussian statistics can be generated in a reproducible manner,

and show how the instantaneous flux of odorant molecules can be

measured. By eliciting ORN responses to these stimuli, we show in

vivo that Drosophila ORNs contribute to naturalistic sensing by using

receptor adaptation and saturation to change their gain in response to

stimulus mean and variance. Mean-dependent gain control followed

the Weber-Fechner relation and occurred primarily at odor transduc-

tion, while variance-dependent gain control occurred both at trans-

duction and at spiking. Odorant transduction and spiking generation

possessed complementary kinetic properties, that together preserved

the timing of odor encounters in ORN spiking despite the fact that

adaptation slowed transduction.
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Part I

I N T R O D U C T I O N



1
I N T R O D U C T I O N

1.1 the olfactory world of insects

Olfaction — the sense of smell — is a key sensory modality in an-

imals. Airborne chemicals can be transported through the air over

long distances, and their detection allows insects to navigate plumes

of odors to their source, helping them find food and mates [61, 119,

142]. For example, mosquitoes use their sense of smell to detect a

variety of volatile molecules produced by humans and animals, espe-

cially carbon dioxide, to find hosts to feed on [134, 171, 175]. Male

moths use specialized, exquisitely sensitive neurons on their antenna

to detect trace amounts of pheromone released by female moths up

to 200 m away and reach them in a few minutes [178]. Insects – either

as pests or pollinators of crops – play a large role in human welfare

and olfaction plays a key role in their behavior.

The study of insect olfaction spans a number of broad questions

across many disciplines. What are the possible chemical signals that

can be detected in the environment that insects inhabit? What are the

molecules and cells that insects use to sense these signals? What are

the challenges in signal detection and how do insects overcome them?

1.1.1 Features of olfactory stimuli

An odor stimulus consists of one or more volatilized chemicals (odor-

ants) that are typically of low molecular weight (< 300 Da [143]) trans-

2



1.1 the olfactory world of insects 3

ported from a source through the air to the olfactory organ on an

animal. Since odor stimuli, unlike light or sound stimuli, necessitate

physical movement of molecules, the dominant feature of an odor

stimulus is the identity of the molecules being transported. The num-

ber of possible odors is very large, because there exists a large number

of odorants that can be volatilized and that can, individually, act as

ligands for the olfactory system; and because these odorants can be

mixed together combinatorially to create an even greater number of

odors that may be perceived differently and convey a different mes-

sage. However, the fact that all these molecules have to be transported

by the air and are detected by insects means that many olfactory stim-

uli share commonalities regardless of their chemical compositions. A

useful approach to describe the diversity of olfactory stimuli is there-

fore to consider the physical interactions that produce, transport and

modify olfactory stimuli.

1.1.1.1 The physics of the odor environment

All olfactory stimuli begin by odorant molecules evaporating from

some source, like a pollinating flower, or an insect releasing a pheromone.

The volatilized molecules that constitute the odor move with the air

that surrounds them, and the temporal evolution and statistics of

odor signals depends therefore on the movement of the air that they

are carried by. Two non-dimensional numbers, the Péclet number and

the Reynolds number, are useful descriptors of moving airstreams

that can predict the statistics of the odor signals within them.

The Péclet number is defined as the ratio of the advective and dif-

fusive transport rates of a species in a flow. These two rates are deter-

mined by the ambient motion of the air and molecular diffusion that

occurs by Brownian motion. For most insects that navigate airborne

odor stimuli, these two processes occur at very different scales: diffu-
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sion is slow and local, and advection is fast and extensive. Thus, the

Péclet number is typically large and odorant motion is dominated by

advection [142]. This means that the motion of the air cannot be ne-

glected when considering odor signals, and that in many cases, fluc-

tuations in odor signals are correlated with fluctuations in instanta-

neous flows, a fact that has important consequences for insects whose

primary organ of olfaction is co-located with their primary organ of

mechanosensation in their antennae. The domination of advection

also influences how odor stimuli are delivered to insects in the lab:

most odor delivery systems use moving airstreams to deliver odors.

Some of these techniques are discussed in Chapter 2.

The Reynolds number is the ratio of the inertial forces to viscous

forces within a fluid. It can be used to predict the transition from lam-

inar to turbulent flow, and since the temporal statistics of odor signals

are expected to be very different in the two cases, the Reynolds num-

ber is an important determinant of the olfactory environment. Insects

navigating to an odor source in large Reynolds number environments

will experience intermittent, filamentous odor stimuli, as is the case

for insects on the wing [30]. Insects navigating low Reynolds envi-

ronments will experience odor signals that can be closer to smooth

gradients [142], which can occur during periods of still air. The tem-

poral statistics of odors in many environments may therefore be very

skewed [30]. While a large number of studies have used simple odor

stimuli to characterize the behavioral and sensory responses as a func-

tion of the identity and intensity of odor stimuli [19, 20, 74], fewer

studies have studied how intermittent odor stimuli are encoded by

sensory neurons [113, 125], and how they modulate olfactory behav-

ior. In §4.2.1, I present reproducible intermittent stimuli created to

mimic the statistics of odors in the conditions described above.
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1.1.1.2 Odor plumes

Odor plumes are columns of air that contain a higher concentration

of odors created by evaporation of odors from small sources. Due to

the large Péclet numbers of flows in ecologically relevant contexts,

the chemical nature of the odor does not dominate the statistics of

plumes, and plume structure can be considered to be largely inde-

pendent of its components [119]. Insects can find the source of odor

plumes, such as a flowering plant, by navigating up odor plumes, of-

ten by flight. Odor plumes are “patchy” or intermittent at short tem-

poral scales and large spatial scales (< 1 s and > 1 mm), and are com-

posed of narrow “whiffs” of odor interspersed with periods of low

odor called blanks [142]. These whiffs tend to occur in bursts called

“clumps”, and the time between subsequent whiffs, and between sub-

sequent blanks is distributed according to a power law [30].

At a given location, odor plumes are intermittent, and character-

ized by the absence of a continuous signal at a given intensity. The

intermittency of odor plumes is a direct consequence of the motion

of the air carrying the odor. Turbulence can cause filaments in odor

plumes to become thinner, increase intermittency, and decrease the

effective intensity of odor signals in filaments [142]. The Kolmogov

length is a measure of the size of the smallest turbulent motions in a

flow, and is a function of the wind speed and height above ground,

and is typically 1 cm [119].

The location of the odor source can also determine intermittency

and temporal structure of an odor plume. Agave palmeri, the largest

agave species in the United States, produces flowers on stalks that

can be as high as 5 m tall, and thus experience large wind speeds;

while flowers of the jimsonweed plant, Datura wrightii, are close to the

ground and experience lower wind velocities [142]. The Reynolds and

Péclet numbers are thus very different for odor plumes from these
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two flowers, posing different challenges to the insects that find them

using olfaction. In addition, wind speed, an important determinant

of the temporal structure of odor plumes, can vary significantly over

time. Most importantly, the daily rhythm of the sun can change wind

speed and atmospheric turbulence dramatically from day to night,

offering windows of opportunity to insects like hawkmoths that use

periods of low turbulence following sunset to find flowers [142].

1.1.2 Olfactory behavior

Olfactory behaviors benefit insects when they lead to a source of food

or mates. However, search strategies vary across insects, based on the

size of the insect, the quality, reliability and volume of the olfactory

signal, the environment they search in, and the range of sensors avail-

able to them.

An optimal strategy for small insects (whose body size is smaller

than the length scale of the plume) has been suggested to be to fly

crosswind; and for large insects to fly up and downwind; till contact

is made with an odor plumes [28]. Pheromones produced by female

moths are an unambiguous and loud signal for male moths, given the

specificity of the pheromone to moths and the sensitivity of antennae

of male moths to that pheromone [90]. Mosquitoes that sense carbon

dioxide to find hosts must do so despite ambient carbon dioxide in

the atmosphere, and carbon dioxide released from non-host sources

[171]. Search strategies in these two cases are likely different.

Because odor stimuli are carried by the air, and because Péclet

numbers are typically large, odorant stimuli may be correlated with

changes in airspeed. In fact, in insects, the antennae are both olfac-

tory and mechanosensory organs, and are actively positioned during

flight [112]. Flight is advantageous in navigating olfactory landscapes,
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as it allows insects to sample odor plumes in the air, far from sur-

faces, and flight is fast [172], allowing for rapid movement towards

the source of odor [49]. However, flight brings its own challenges:

while walking, it is easy to determine airspeed and walk upwind, as

relative motion of air is likely due to wind. Walking up airstreams

to sources of odor can therefore be realized using just mechanosensa-

tion. However, upwind flight is more complicated, as wind speed and

direction have to be deconvolved from the self motion of the insect.

Typically, insects use multi-sensory fusion to solve this problem, pool-

ing information from visual cues and other mechanosensory organs

[49, 57, 66].

Heading upwind is not sufficient to reliably find sources of odor,

since plumes typically become narrower closer to the source [119,

121]. This means that the same error in positioning is more likely

to move an insect outside the plume closer to the source than far-

ther away from it. Casting, an iterative zigzag flight pattern that pro-

gressively widens crosswind at the expense of upwind progress, is

a behavior used by many insects to navigate to odor sources, as it

enhances the likelihood of directly making contact with the plume as

the cast widens [21]. It can also act to maintain the position of the

insect relatively constant crosswind till the plume shifts back to the

insects position [41].

The set of sensors available to an insect allows it to use a vari-

ety of strategies to find sources of odor. Insects have a pair of an-

tennae, and can measure the difference in odor concentrations across

left and right antennae [62]. Insects can use osmotropotaxis, a behav-

ior where insects turn towards the side that has higher concentra-

tion, during walking [15] and flight [48]. Olfactory behavior is likely

high multimodal, integrating information from olfactory, visual and

mechanosensory systems. Odor localization by Drosophila has been
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shown the require visual feedback [59], and the behavioral response

of flies is a linear superposition of both visual and olfactory inputs

[58].

The primary challenge in studying olfactory behavior is measur-

ing the behavior of the insect together with the stimulus that it de-

tects. One technique is to let insects fly freely in wind tunnels, where

well-controlled flows constrain odors to a known volume of the wind

tunnel, and the position of the insect can be used to estimate the

stimulus it encounters. Such an approach, combined with 3-D track-

ing of the insect, has been used with moths [144, 176] and Drosophila

[59]. An alternative approach is to tether the insect, either to a rotat-

able or fixed pin, and present controlled odor stimuli to the insect.

Such an approach has identified behavioral responses to a variety

of monomolecular and complex odors, either combined with visual

stimuli [34, 35, 48, 58, 101], or in darkness [13]. Chapter 5 describes

attempts at using a tethered fly assay to determine how olfactory

stimuli modulate flight behavior.

1.2 anatomy of the olfactory system

The fruit fly, Drosophila melanogaster, has been the system of choice

for many studies on insect olfaction. The focus on Drosophila stems

from several reasons: (i) it is easy to grow and maintain in laborato-

ries, with a short generation time; (ii) its genome has been sequenced,

and a large variety of genetic tools are available for Drosophila; (iii)

its olfactory system is similar to other insects, and even to verte-

brates in rough organization, though numerically simpler. The olfac-

tory anatomy of Drosophila also loosely resembles the circuitry of vi-

sual processing [181]. While the olfactory anatomy of Drosophila is
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described in the following section, many features are common to the

olfactory system of other insects.

The primary olfactory organs in Drosophila are the antennae and

the maxillary palps. The antennae are not just olfactory organs but

are also organs of audition and mechanosensation. The olfactory func-

tions of the antenna are localized to its third segment, which are cov-

ered in fine sensory hairs called sensilla. Sensilla are also present

on the maxillary palp. Based on their morphology, sensilla can be

divided into three types: basiconic (10 functional types), coeloconic

(4 types) and trichoid (4 types) [154]. Based on identified ligands,

basiconic sensilla largely respond to volatile food odors; coeloconic

sensilla largely respond to amines, humidity and a few food odors;

and trichoid sensilla respond to volatile compounds and pheromones

from other flies, like cis-vaccenyl acetate [37]. The antenna has all

three types of sensilla, that exhibit some degree of grouping on the

surface [155], while the maxillary palp only has basiconic sensilla. The

structural and functional organization of sensilla into these groups is

similar in other insects [18].

Each sensillum contains the dendrites of 2 (sometimes up to 4)

different primary sensory neurons, called Olfactory Receptor Neu-

rons (ORNs). In Drosophila, there are ~1320 ORNs in each antenna

[71]. The sensillum also contains a lymph that the dendrites of ORNs

are surrounded by, and contains pores, grooves or other opening

based on the type of sensilla through which odor molecules enter

the sensillum, diffuse through the lymph, and reach the neuron [154,

155]. ORNs appear to be generic, with little functional specialization

between ORNs [181]. What gives a ORN a particular response pro-

file, and connectivity appears to be the specialized receptor that it

expresses [74].
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Receptors in ORNs can belong to one of three families: the olfactory

receptors (ORs), of which there are around 60 types; the gustatory recep-

tors (GRs), and the ionotropic receptors (IRs). ORNs in basiconic sensilla

mostly express one Or, together with the olfactory co-receptor Orco

that together make a ligand-gated ion channel [102, 180]. Some ORNs

in basiconic sensilla express the GRs GR21a and GR63a, that are un-

usual among GRs in their expression on the antenna, and mediate

responses to carbon dioxide. Most coeloconic sensilla express IRs.

While ORNs that express the same OR can be housed in sensilla

that may be distributed across the antenna, their output is pooled in

a remarkable structure that organizes the axon terminals of ORNs

by the receptor their express called the glomerulus [78]. All ORNs

that express the same OR project to one out of ~60 glomeruli in the

antennal lobe, where they make synaptic contact with second order

neurons called Projection Neurons (PNs). Typically, a single glomeru-

lus pools ORs of a single type, though there are exceptions in some

specialized glomeruli. For example, in male moths, ORs that detect

different components of a pheromone are pooled together in a single

glomerulus [75].

1.2.1 Comparison with other olfactory systems

The olfactory system of Drosophila exhibits many similarities with that

of other insects, and even with the mammalian olfactory system. Both

the mammalian and the insect olfactory system use several primary

olfactory organs: mammals’ primary olfactory organ is the olfactory

epithelium in the nose, but also include the vomeronasal organ, the

Gureneberg ganglion, and the septal organ of Masera [167]. The in-

sect olfactory system is distributed across the antennae and the max-

illary palp. The overall cellular structure of the olfactory system is
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also similar, where primary sensory neurons (ORNs) express olfac-

tory receptors, and ORNs that express the same OR project to the

same glomerulus.

Insect olfactory systems differ from mammalian olfactory systems

in many ways. Primarily, they are much smaller, and numerical less

complex. While Drosophila have only ~60 olfactory receptors [71, 177],

and mosquitoes ~80, humans have around ~350, and mice over 1000.

The gross anatomy of the olfactory system is very different between

insects and mammals, that has important consequences on their func-

tion. In insects, ORNs are housed in sensilla on external organs, where

they can directly sample volatile ligands the air without any interme-

diate step. In mammals, respiration and the housing of the ORNs

within the nose means that mammals sniff in order to smell. While

this has the advantage of giving a degree of control over the flow of

olfactory stimuli over ORNs, it also means that mammalian ORNs

are locked to the kinetics of respiration. Recent studies have begun to

uncover the consequences of this coupling [139, 158, 161].

1.3 orn responses , adaptation, and gain control

The response of ORNs to odorants occurs in two stages. First, odor

binding induces transduction, which leads to an inward current from

the sensillum lymph to the dendrite of ORNs. This transduction cur-

rent can be detected by changes in the Local Field Potential (LFP)

in extracellular single-sensillum recordings. Transduction leads to ac-

tion potential generation, and spikes generated at ORNs propagate

down the axon to glomeruli, where they activate downstream neu-

rons.
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1.3.1 Baseline activity

All ORNs fire spontaneously, even in the absence of any ligand. Mu-

tating a ORN’s odorant receptor changes the baseline firing rate [127],

suggesting that baseline spiking of ORNs may be a consequence of

receptors being active even when there is no ligand. Different ORNs

have different characteristic spontaneous firing rates: for example, the

ab3B ORN has a relatively high spontaneous firing rate (~10 Hz),

while the ab2B ORN has a very low one (< 2 Hz). The diversity in

spontaneous activity may reflect a diversity in the equilibrium con-

stants between different receptors in these neurons [182]. This is sup-

ported by the fact that expressing novel receptors in ORNs changes

not only their response profile but also their spontaneous activity lev-

els [72, 74]. No clear explanation for the baseline activity of ORNs

currently exists, though several possibilities have been proposed. The

partially active state of receptors with no ligand might make them

more sensitive to small stimuli, or the small but non zero activity

of the neuron might keep the ORN’s membrane potential close to its

spike threshold, making it easier and faster to respond to signals [182].

On the other hand, it might not be possible to evolve odorant receptor

systems that are entirely inactive when unbound, and spontaneous

activity of receptors and ORNs might be an unavoidable price to pay.

1.3.2 ORN response phenomenology

Despite being housed in sensilla that are exposed externally, ORNs

are difficult to record from as they are small, and protected by a thick

and hard-to-breach cuticle [177]. One of the first attempts to record

from ORNs directly using patch clamp electrophysiology reported a

low yield, and involved a preparation that dissected the antennae,
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that made it hard to know the identity of the neuron being recorded

from [47]. An improvement of the technique involved slicing the an-

tenna into thin sections, and recording from flies where ORNs of in-

terest were genetically labelled, allowing identification and targeting

of individual ORNs of known type [26]. However, this approach in-

volved introducing odorant stimuli in liquid phase, which is not nat-

ural, and reported oscillatory responses to pulses of odorant, which

have not been observed using other techniques.

The most common technique to record from ORNs is to use single

sensillum extracellular recordings [19, 20, 125]. In this technique, a

recording electrode is introduced into the sensillum of an immobi-

lized Drosophila. This technique can record spikes from both ORNs in

the sensillum, and can also record the LFP, which has been used a

measure of the transduction current in the sensillum. All the results

presented in Chapter 4 use this technique.

The large diversity in ORs leads to diverse response of ORNs to

odor stimuli. Most ORNs respond to multiple ligands, and many lig-

ands activate multiple ORNs [74, 100]. Increasing the concentration

of the applied ligand has two effects. First, ORN response amplitudes

increases sigmoidally with the log of the concentration [19, 20, 113].

Second, more ORNs expressing different ORs start responding to the

ligand, as ORNs are more broadly tuned to large stimuli, presum-

ably due to the increasing effects of non-specific activation of ORs by

ligands [182].

1.3.2.1 Odorant transduction

Odorant transduction can be fast, with initiation within milliseconds

of odor reaching the antenna [170]. Transduction currents integrate

temporally over brief stimuli, with more prolonged stimuli leading

to larger responses [26]. Long pulses of odorant induce a rapid in-
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crease in transduction responses, followed by decay to some steady

state value. These responses have been observed both using the LFP

as a proxy for transduction [19, 20, 125], and by direct patch clamp

measurements [26]. ORNs which express two different receptors, one

native and one mis-expressed, and which are activated by two ligands

that activate the two receptors independently show cross-adaptation

between receptors, suggesting that adaptation state affects the entire

neuron [125].

1.3.2.2 Spiking

Odor transduction leads to spike generation in the ORN. Spikes are

elicited preferentially by the rate of change of transduction, rather

than simply by the magnitude of transduction [125, 181]. This means

that the firing rate to a pulse of odor peaks when transduction rises

rapidly, and is suppressed below baseline when transduction currents

fall back to baseline. The transformation of transduction currents to

firing rates is therefore partially derivative taking [125], which means

that ORN spike rates encode both the magnitude of the stimulus and

its derivative [96].

1.3.3 Adaptation and gain control

Adaptation is a process by which the encoding of odorants in ORN

responses is modified, usually in response to a change in local stim-

ulus statistics. These modifications are adaptive in the sense that they

may encode the stimulus more efficiently, or make use of the response

range more effectively.

The term “adaptation” has been used to refer to a wide variety of

phenomenon in ORN response kinetics:
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a. the decrease in response following an initial transient on a step

change in stimulus [25, 26, 125].

b. the decrease in responses to brief test pulses following previous,

identical, pulses [26]

c. the decrease in response to brief test pulses following longer

conditioning pulses [20, 125]

d. the decrease in response to brief test pulses presented on a back-

ground, vs. those presented without a background [25, 26, 113]

This wide range of phenomenon reflects the variety of different ex-

perimental assays designed to probe adaptation, and it is not clear

if these disparate phenomenon are different manifestations of the

same underlying mechanisms. In this dissertation, I use a Linear-

Nonlinear (LN) model to quantify and describe ORN responses to

odorant stimuli. Using this phenomenological model lets me describe

adaptation as any change in the parameters of the best-fit LN model,

similar to the approach used by earlier work that studied the response

and adaptation of visual cells [6]. Since the LN model consists of two

modules, a linear filter and a static output nonlinearity, adaptation

can change either the kinetic properties of the response, or it can

change the output nonlinearity. Changes in the slope of the output

nonlinearity are defined to be changes in the gain of the system. Thus,

gain control is a consequence of adaptation.

1.3.4 The effect of adaptation on response kinetics

Adaptation can also change the kinetic parameters of the best-fit LN

model. Many sensory systems adapt in a manner that changes both

the gain and the kinetics of the response. Specifically, decreases in

gain typically speed up the kinetics of the system. Such a gain-speed
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tradeoff is seen in photoreceptors (see [36] for a summary), and is a

consequence of simple rules that govern responses of cells [153], as

shown in the following. Consider the activity of a simple sensory cell

that updates its response based on some stimulus S(t) and its own

response r(t):

t
dr
dt

+ r = Fr + S (1.1)

where t is the time constant of its response and F is a parameter

that defines how the response depends on its current value. When

F = 0, the cell behaves like a low-pass filter acting on the stimulus,

and does not adapt in any way. When F > 1, the system is unstable,

and the response diverges due to runaway feedback. When F < 1, the

system is stable, and eq. 1.1 can be rewritten to be

t

1 � F
dr
dt

+ r =
S

1 � F

This reformulation allows us to identify terms that correspond to

the steady state gain (1/(1� F)) and the effective timescale t/(1� F),

making it clear that increases in gain necessarily lead to decreases in

effective timescale, thus recapitulating the gain-speed tradeoff. Such

a tradeoff is seen in many models of sensory cells [36, 125, 152].

However, the effect of adaptation on ORN transduction kinetics

cannot be reproduced by this formulation. In ORNs, transduction

kinetics slows down with adaptation, a result observed both with

extracellular LFP recordings [125] and with patch clamp recordings

[26]. This suggests that the adaptation mechanisms in ORNs cannot

be reduced to a simple linear formulation as in eq. 1.1, which may

be related to the fact that ORNs are unusual among sensory neurons

in that they are activated by chemical ligands, implying strong front-

end nonlinearities arising the receptor binding and activation. Intrigu-
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ingly, the kinetics of firing rate responses display some invariance to

the stimulus amplitude and background [113], a result that is seem-

ingly in contradiction to the earlier results arguing that adaptation

slows down transduction responses. ORN responses whose kinetics

are invariant to stimulus amplitude or background could preserve

the timing of odor encounters in neural encoding, a feature that may

be critical to some search strategies and may aid in navigating odor

plumes (as discussed in §1.1).

1.4 a multidisciplinary approach to study orn response

and adaptation

Arising from the literature surveyed above, I identify the following

areas of interest:

a. orn adaptation. Given the wide range of statistics of odor

signals that insects might encounter (as discussed in §1.1), how

do ORNs change their encoding rule with the stimulus back-

ground? What features of odor stimuli induce adaptation? How

quickly can ORNs adapt? How similar is adaptation in ORNs

to adaptation in other sensory cells?

b. timing of odor encounters. The time of odor encounters

may be useful for olfactory search strategies. However, several

studies have suggested that adaptation at transduction slows re-

sponse kinetics. Intriguingly, the kinetics of firing rate responses

display some invariance to the stimulus amplitude and back-

ground. Can ORNs preserve the timing of odor encounters in

their response? How can this information be preserved despite

transduction kinetics that depend on adaptation state?
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To address these questions, it is first necessary to assemble a number

of techniques, practical, conceptual and numerical: electrophysiologi-

cal tools to record from Drosophila ORNs, genetic tools to express pro-

teins in cells of interest, apparatus to control and measure odorant

signals precisely, and linear-nonlinear modeling to quantitatively de-

scribe the features of ORN response. These techniques borrow exten-

sively from various fields: neuroscience, engineering, applied mathe-

matics and genetics. While many of these techniques and tools have

been long established, some of them are novel, and combining them

as I have in this dissertation permits me to ask and answer novel

questions about odor encoding in Drosophila.

In Part II, I describe the methodology and tools that lets me answer

these questions experimentally. The rich diversity of odor stimuli that

insects likely encounter in their natural environment (§1.1) is in sharp

contrast to the simple stimuli often used in experiments. While there

exist several legitimate reasons to use simple stimuli, practical diffi-

culties in measuring and controlling odor stimuli have long hindered

researchers from using more complex stimuli, like those that exist in

the turbulent environments of insects. Chapter 2 details techniques

to deliver odorant stimuli to animals in olfactory systems, with a

novel technique to measure the absolute flux of odorant that is be-

ing delivered. The novel methods described in this chapter let me

deliver pulses of various amplitudes, fluctuating stimuli, and Gaus-

sian stimuli with controlled means and variances. In Chapter 3, I

present numerical methods to analyze time series data of inputs and

outputs from a system, e.g., the dual time series of odorant stimu-

lus presented to a ORN and its firing rate responses. I describe how

Linear-Nonlinear (LN) modeling lets me quantitatively describe the

response and adaptation properties of systems solely from time se-



1.4 studying orn response and adaptation 19

ries data, without necessitating a detailed knowledge of the inner

mechanisms of that system.

In Part III, I describe experimental results from Drosophila ORNs

and behavior. In Chapter 4, I will describe experiments studying how

Drosophila ORNs respond and adapt to naturalistic and Gaussian stim-

uli with controlled means and variances. I will show that Drosophila

ORNs can vary their gain on rapid timescales in response to natural-

istic stimuli, and that they decrease their gain with the mean stimulus

(following the Weber-Fechner law) and with the variance of the stimu-

lus. I will also show how adaptation in these ORNs changes the kinet-

ics of transduction, but that complementary mechanisms preserve the

timing of odor encounters in the firing rate of these ORNs. This result

resolves apparent contradictions between recently published studies

from our lab [113] and elsewhere [26, 125]. In Chapter 5, I describe the

development of an assay to probe how various features of olfactory

stimuli modulate the flight behavior of tethered Drosophila. Pitfalls

encountered while using this assay are described, together with po-

tential workarounds, as a reference for future researchers considering

this assay for their experiments.

Finally, in Part IV, I bring together the results described earlier to

examine the impact of this dissertation on future research on these

topics. My goal here is to present these results in a framework that

will be useful for the study of other systems, sensory and otherwise.



Part II

M E T H O D S



2
M E A S U R I N G A N D C O N T R O L L I N G O D O R A N T

S T I M U L I

2.1 introduction

The study of sensory neurons, especially primary sensory cells, re-

quires the ability to precisely control and measure the stimulus ap-

plied. In the study of vision and audition, the ease of generation

and measurement of light and sound stimuli have led to a detailed

understanding of how primary visual and auditory neurons encode

visual and auditory stimuli. Olfactory stimuli are harder to deliver

than sound or light, and even harder to measure. This is because ol-

factory stimuli consist not of energy but of small, volatile molecules

of bewildering variety that have to be mechanically transported from

the source, typically through the air, to the Olfactory Receptor Neu-

ron (ORN). Furthermore, odorant molecules interact extensively with

their environment, including during transport from the odorant source

to the sensory neuron. These interactions, that depend on odorant

identity, have been shown to result in a diversity of temporal struc-

tures of identically delivered stimuli, that can affect the response ki-

netics of receptor neurons [113].

In this work, we put forward methods to deliver and measure odor-

ant stimuli that can be used by researchers studying olfaction. These

methods do not require any bespoke hardware; instead, they rely on

two off-the-shelf components (a fast Photo Ionization Detector (PID)

and a Mass Flow Controller (MFC)) to construct flexible odorant deliv-

21
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ery systems that can deliver i) reproducible pulses of odorant at vari-

ous intensities (§2.2.3) ii) fluctuating Gaussian stimuli with controlled

means and variances (§2.2.5). We also introduce a simple procedure

to calibrate the PID to any detectable odorant without using any ad-

ditional equipment (§2.2.2). The focus of this work is on experimental

applications where changes in airspeed do not significantly affect the

response properties of ORNs, for example, in Drosophila ORNs [187],

and to deliver monomolecular odorant stimuli.

2.1.1 Delivering odorants: olfactometer design

There exists a variety of methods of delivering odorants. Figure 2.1

shows a sample of the zoo of olfactometers (devices for delivering

odorants) that have been developed to deliver odorants in experimen-

tal preparations. While the full assortment of olfactometers is too rich

to comprehensively survey here, all olfactometers can be classified

into a few basic types based on:

a. valve position. A valve is typically used to turn airstreams

on or off. Is this valve upstream or downstream of the odorant?

b. airspeed change . Does delivering the odorant lead to a change

(typically an increase) in the airspeed at the outlet?

c. odorant phase . Odorants can be in liquid phase, pure or

diluted, or can be contained on a solid substrate like a filter

paper.

These design decisions come with intrinsic tradeoffs. Positioning

the valve upstream of the valve means that no odorant is directly

in contact with the valve, and that in principle, the valve is not con-

taminated by the odorant1 (Fig. 2.1a). This has led previous work to

1 However, odorants can diffuse when there is no flow, contaminating valves upstream
of odorants
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Figure 2.1: Different olfactometer designs used in the literature. (a) The “car-
tridge” system, as used in [73, 76, 103, 116]. Odorant is in liquid
phase, on a filter paper disk, within a Pasteur pipette. The valve
is upstream of the odorant. A valve upstream of the odorant
forces. (b) A design similar to (a), but with the valve downstream
of the odorant, as in [55, 149–151]. (c) A design similar to (a), but
with two pipettes to minimise airflow changes on valve switch,
as in [170]. (d) In this design, odorant is stored in a scintillation
vial, allowing greater volumes of odorant. An upstream valve de-
livers either odorized air or clean air to the preparation, as in [68,
96, 131]. (e) In this variant, the odorant containing vial is filled
almost to the top with odorant, minimizing the headspace, mak-
ing it replenish quickly, as in [125]. (f) In this design, an odorized
airstream x is mixed with a clean airstream y and passed through
a capillary (dotted line). A dual valve switches simultaneously
between two airstreams and waste, keeping airspeeds invariant
with valve state, as in [70, 139, 158]. In all panels, the valve is
shown in blue, the odorant in red, Pasteur pipettes as narrow
rectangles, scintillation vials as rounded rectangles, the main air
delivery tube as a hollow tube, and other tubes as lines.
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use a single valve with many different odorants, lowering cost and

speeding up the process of delivering several different odorants [20,

73]. In this configuration, air flows over and depletes the odorant only

when the stimulus is being delivered. This has the advantage of con-

serving odorant, as all odorant that enters gas phase is delivered to

the preparation, a feature that could be useful when small quantities

of odorant are used, for example, when the odorant is expensive or

hard to produce, like a pheromone. Positioning the valve upstream of

the odorant also necessarily introduces transients in the signal, as the

odorant-vapor system is never at steady state. On the other hand, po-

sitioning the valve downstream of the odorant (2.1b, c) means that the

odorant flows through the valve, necessitating using a different valve

for every odorant to avoid cross-contamination. The costs of choosing

to place valves downstream of odorants, both of material and time,

can be significant if hundreds of odorant-receptor combinations are

to be tested, as in [73, 74, 100, 114]. Since the valve is downstream of

the odorant, air always flows over the odorant, and the valve diverts

this odorized airstream either to waste (normally), or to the prepara-

tion. While this design consumes more odorant, the liquid odorant in

its chamber can reach steady state with the vapor in the chamber, and

the state of the valve downstream of the odorant does not disturb this

equilibrium, which could lead to more reproducible stimuli.

The topology of the olfactometer also determines whether divert-

ing the odorized airstream into the main airstream necessarily leads

to changes in the airspeed of the main flow. Unless explicitly compen-

sated for, introducing a new channel into the main airstream will in-

crease the airspeed at the outlet, which may be undesirable for some

organisms or experiments. A simple way to compensate for this in-

crease in the airstream is to use another valve to switch between an

additional clean airstream and the odorized stream, as in Fig. 2.1d.
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Special valves with two inputs and outputs are typically used, as pair-

ing two valves is often impractical due to variations in the resistances

from valve to valve, that make symmetric switches hard to achieve

(Fig. 2.1f).

Odorants are typically diluted in mineral oil or paraffin oil, since

odorants evaporating from paraffin oil are believed to exhibit a lin-

ear relationship between their liquid and gas phase concentrations

[17]. Traditionally, serial dilutions of odorants have been prepared in

paraffin oil, and small quantities of these mixtures have been applied

to filter paper disks in glass Pasteur pipettes [37]. “Cartridges” so pre-

pared contain odorant in the gas phase that evaporates from the filter

paper disk, and are typically used in conjunction with a valve before

the cartridge, that pushes the odorized air towards the preparation

[20, 73]. An alternative is to use a vial containing a larger quantity of

the diluted odorant liquid, either with a very small headspace (Fig.

2.1e), as in [125], to ensure that the headspace gas phase concentra-

tion is dominated by the bulk of the liquid odorant, or with a larger

headspace, as in [96], to create a large volume of odorized air that can

be pushed towards the preparation (Fig. 2.1d).

Diluting odorants in liquid phase using mineral or paraffin oil

leads to intrinsic non-reproducibility, since every passage of air over

the mixture depletes the liquid phase concentration of the odorant

and the diluent at different rates. In the extreme case, mineral oil

and paraffin oil are practically nonvolatile and every passage of air

over the oil-odorant mixture depletes the odorant but not the diluent.

Since the gas phase concentration of odorant in the headspace de-

pends on the liquid phase concentration of odorant in a region close

to the boundary layer, the gas phase concentration of the odorant

continuously decreases with time. One way to ameliorate this deple-

tion is to use a very large volume of odorant mixture, and to stir
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the mixture continuously [113]. Stirring expands the effective bound-

ary layer of the mixture, and enables the gas phase concentration of

the headspace to track the liquid phase concentration more closely.

However, stirring odorants may be impractical in some applications,

especially in the cramped and electrically sensitive environment of

an electrophysiology rig, and doesn’t ultimately solve the problem of

odorant depletion.

2.1.2 Delivering odorants: stimulus waveforms

Odorant stimuli can be defined by their chemical identity, amplitude

and temporal structure. The choice of odorant, and their concentra-

tion define the first two features. Pulses of odorant have been used as

a common stimulus waveform [37, 102], as they are easily generated

by briefly turning on a valve that directs odorized air to the prepa-

ration. These simple stimuli reveal whether the neuron of interest

responds to the odorant tested or not, and can also reveal the kinetics

of response [20, 74].

More complicated stimuli are difficult to generate due to two rea-

sons: (i) the non-uniform rates of evaporation of volatile odorants

makes delivering long stimuli challenging and (ii) a valve has only

two positions, on or off, limiting the temporal structure of the odor-

ant stimulus. Various studies have worked around these limitations

to deliver more complex odorant stimuli. Using large volumes of liq-

uid odorant and stirring to fight depletion, some studies have used

a valve to randomly turn on and off an odorant airstream, generat-

ing a random binary signal that has been used to characterize the

response properties of ORNs [55, 113, 125, 150]. While stimuli gen-

erated this way are typically bimodal, corresponding to on and off

states of the valves, unimodal stimulus distributions can be achieved
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with combinations of valve switching time and some odorants with

slower intrinsic kinetics [113]. Other studies have used custom-made

olfactometers using computer controlled MFCs to generate triangu-

lar, staircase and Gaussian stimulus waveforms [95, 96]. However,

there exists no easily-reproducible method to realize complex odor-

ant waveforms using easy-to-acquire hardware.

2.1.3 Measuring odorants

Light can be measured by cameras and sound by microphones, and

the sensitivity and range of these electronic sensors can exceed that

of the human eye or ear. However, no equivalent electronic “nose”

has been developed. Therefore, measuring odorants is not standard

practice in olfactory research. One of the earliest attempts to mea-

sure odorant stimuli used gas-chromatography on the headspace [83].

Though cumbersome, slow and expensive, gas-chromatographic tech-

niques are still useful, especially in studies of the chemical ecology of

olfactory animals, and coupled with presentations of many odorants

eluted from a single, natural odor source [51].

Another approach is to use a visible tracer and measure the stimu-

lus optically. While this is an indirect measure, and is not informative

of the absolute amount of odorant, it can reveal the spatial and tem-

poral pattern of odorant stimuli, and has been used in applications

where the precise timing of odorant stimuli is key [170]. Another opti-

cal method is to use Fourier-Transform Infrared Spectroscopy (FT-IR).

This method has been used to measure the gas-phase concentration

of known odorants from their absorption using the Beer-Lambert law

[108, 152].

An increasingly common measurement technique is to use a PID

to measure odorant stimuli in the gas phase. First used in olfac-
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Figure 2.2: Relying on liquid phase concentrations can bias estimates of neuron re-
sponse. (a) Dose-response curve of ab3A responding to pulses of
ethyl acetate stimulus, plotted as a function of the concentration
in liquid phase. Red line is best fit Hill function, and text shows
the parameters of the best fit. (b) Gas phase concentration vs. liq-
uid phase concentration, showing variability and non-linearity
in mapping between liquid-phase and gas-phase concentration.
(c) Dose-response curve of ab3A plotted vs. gas phase concentra-
tion. Red curve is the best fit Hill function. (d-f) Similar plots for
ab2A responses to pulses of methyl butyrate. (g-i) Similar plots
for ab3A responses to pulses of 1-octen-3-ol. Note that the best-
fit parameters are different in the first and third columns. In all
plots, values of K1/2 are reported in V.
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tory research to measure the pheromone intensity delivered to moths,

they have been used in a variety of roles, including for concentra-

tion control in an olfactometer [86]. The PID works by sucking odor-

ized air into a small chamber, where a Ultra Violet (UV) light ionizes

molecules in the sample. These ions set up a current between two

charged plates, which is converted into a voltage and reported by the

instrument. We use a PID in this study to measure odorant stimuli,

as it is a fast, approximately linear, and general-purpose instrument

that is easy to use.

While it is commonplace in olfactory studies to not measure the

stimulus, and to compare responses to liquid-phase dilutions of the

odorant [19, 74, 103, 183], measuring the stimulus presented to ORNs

is key to quantitatively describing their response, and relying on liq-

uid phase concentrations can bias characterizations of their response

phenomenology. For example, consider a typical dose-response exper-

iment where ethyl acetate stimuli of varying concentration are pre-

sented to a ab3A ORN. Peak ORN responses exhibit a sigmoidal rela-

tionship with the log of the liquid phase dilution (Fig. 2.2a). However,

simultaneous measurement of the stimulus using a PID (Fig. 2.2b) re-

veals that (i) the stimulus is variable from trial to trial and (ii) the gas

phase concentration is not linear with the liquid phase concentration,

as assumed in Fig. 2.2a. Plotting the peak ORN response vs. the mea-

sured gas phase concentration reveals the true dose-response curve

(Fig. 2.2c). Fitting Hill functions to the curves in Fig. 2.2a and fig. 2.2c

yield different parameters, suggesting that relying on liquid phase

dilutions as a proxy for gas phase concentration can bias estimates

of ORN response, even in this simple case where odorant and ORN

kinetics are neglected.
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2.2 results

2.2.1 Modeling the diversity of stimulus kinetics

A common method of delivering odorants is to prepare “cartridges”

from Pasteur pipettes containing 50 µL of odorant diluted in Paraffin

Oil on a small filter paper disk, and to force a small volume of air

through the cartridge. Odorants delivered this way exhibit a broad

range of stimulus kinetics (Fig. 2.2.1), that depend on the chemical

identity of the odorant [113]. Since the conditions of the delivery are

identical across odorants, we reasoned that the origin of the diver-

sity of stimulus kinetics is variation in the interactions of the odorant

with the surfaces of the delivery system, and simple physical proper-

ties of the odorants like their vapor pressure. We therefore set out to

develop a simple model of odorant evaporation from the filter paper,

interaction with the surfaces of the delivery system, and transport by

the air flowing through the delivery system.

Consider a typical delivery system, where a main airstream blows

clean air onto the preparation/PID, while a smaller airstream intro-

duces odorized air into the main airstream when a valve is activated.

Such a device corresponds to the design shown in Fig. 2.1a and is

shown schematized in Fig. 2.3. Clean air flows through main delivery

tube at a flow rate Q2. A small filter paper disk containing odorant

diluted in Paraffin Oil is located in tube 1 (the Pasteur pipette), at

a length L1 from the main air tube. For simplicity, we assume that

the internal radius of both tubes is the same, R. When the valve is

activated, air flows through tube 1 with rate Q1 < Q2. The junction

between the two tubes is at a distance L2 from the outlet of the tube,

where the preparation/PID is located.

We define the following terms:
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Figure 2.3: Schematic of a typical odorant delivery system. Clean air flows
through main delivery tube at a flow rate Q2. A small filter paper
disk containing odorant diluted in Paraffin Oil is located in tube
1, at a length L1from the main air tube. For simplicity, we assume
that the internal radius of both tubes is the same, R. When the
valve is activated, air flows through tube 1 with rate Q1 < Q2.
The junction between the two tubes is at a distance L2 from the
outlet of the tube, where the preparation/PID is located.
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• c̃1and c̃2 are the concentrations of odorant in gas phase in tube

1 (the Pasteur pipette) and tube 2 (the main delivery tube)

• wq1 and wq2 are the surface concentrations of odorants bound

to tubes 1 and 2; w is a material constant describing the den-

sity of binding sites on the glass, and q1 and q2 are the surface

coverages for tubes 1 and 2 (q1,2 2 [0, 1]).

• ñ and ñp are the amount in moles of odorant and paraffin oil in

liquid phase.

• q(t)Q1 and Q2 are the flow rates in the pipette and the delivery

tube, where q(t) = 1 when the valve is on, and is 0 otherwise.

• A1,A2,V1 and V2 are the surface areas and volumes of the pipette

(1) and delivery tube (2).

• AS is the surface area of the filter paper, assumed to determine

the surface area of the odorant

At the boundary between the liquid on the paper filter and the air,

the gas phase concentration is at steady state with the liquid phase

and c̃1|sur f ace = cSg(x)x, where the molar ratio in liquid phase is

x = ñ/(ñ + ñp) and cS = PS/Pca is the saturated vapor concentration

where P is the air pressure and ca = P/(RT) is the concentration of

air. The rate of evaporation � ˙̃n depends on the gradient of the con-

centration in gas phase above the paper filter, which in turn depends

on the thickness l of the boundary layer imposed by the air flow over

the surface of the paper:

˙̃n = DAS(m ·rc̃1) ⇠= DAS/l(cSg(x)x � c̃1)

where m is the outward-pointing normal to the surface of the paper

filter. For simplicity we neglect diffusion in the liquid phase and av-

erage the concentrations over the entire tube. The evaporation rate
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therefore becomes kS AS(cSg(x)x � c̃1) where kS µ D/l is a kinetic

constant that captures the dependency of the rate of evaporation on

the diffusion coefficient D of the odorant molecules in air, and on the

thickness of the boundary layer l. kS also depends on the molecular

forces between the paper filter and the molecules of odorant.

The ODEs that govern this system are given by

dc̃1

dt
= �q(t)Q1

V1
c̃1 +

kd A1w
V1

q1 �
ka A1w

V1
c̃1(1 � q1) +

kS AS
V1

8
>>><

>>>:

csg(x)� c̃1 n > 0

0 else

dq1

dt
= �kdq1 + kac̃1(1 � q1)

dñ
dt

= �kS AS

8
>>><

>>>:

csg(x)x � c̃1 n > 0

0 else

dc̃2

dt
= �q(t)Q1 + Q2

V2
c̃2 +

kd A2w
V2

q2 �
k1A2w

V2
c̃2(1 � q2) +

q(t)Q1

V2
c̃1

dq2

dt
= �kdq2 + kac̃2(1 � q2)

For simplicity, we assume that the paraffin oil does not evaporate.

If pure odorant is used on the filter paper, the equations can be sim-

plified since x = 1. In this case the equation for ñ does not play a role

in the dynamics of the odor profile until ñ = 0. If we assume that the

amount of odorant at the source is much larger than the amount that

evaporates during a typical puff, x ⇠= constant, and we can normal-

ize these equations by the initial concentration c0 = csg(x0)x0 and

rewrite them in terms of these new variables:

c1 = c̃1
c0

, c2 = c̃2
c0

, q1, and q2
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Since we assume that the internal radii of the two tubes are the

same, we have
A1

V1
=

A2

V2
=

2
R

and we can define the following known parameters whose values

can be calculated from the geometry of the device:

q1 = Q1
V1

q2 = Q2
V2

and L12 = L1
L2

and the following unknown parameters:

qd = kd qa = kac0 qs =
ks AS

pR2L1
and W = 2w

c0R
(2.1)

This lets us rewrite the ODE system as:

ċ1 = �qq1c1 + qdWq1 � qaWc1(1 � q1) + qs(1 � c1)

q̇1 = �qdq1 + qac1(1 � q1)

ċ2 = �(qq1L12 + q2)c2 + qdWq2 � qaWc2(1 � q2) + qq1L12c1

q̇2 = �qdq2 + qac2(1 � q2) (2.2)

In practice, the time between subsequent pulses (⇠ 10 s) is long,

compared to the duration of the whiff (⇠ 0.5 s). We can therefore

assume that the pipette is at equilibrium before the valve is opened,

yielding the following initial conditions:

c1(0) = 1 q1(0) = 1
1+ qd

qa
c2(0) = 0 and q2(0) = 0

We fit this model (eq. 2.2) to PID measurements of 500 ms pulses

of 27 different odorants (Fig. 2.4). This model was able to reproduce

the full range of kinetics in the dataset, with just four unknown pa-

rameters (eq. 2.1).
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1-octen-3-olisobutyl acetatenerolisobutyric acidhexanoic acidpentanoic acid

butyric aciddiethyl succinateethyl octanoateE2-hexenal1-octanol1-hexanol

β -citronellolgeraniol
3-methylthio-

1-propanolγ-hexalactone
methyl

hexanoatebenzaldehyde

6-methyl
5-hepten-2-one

4-methyl
phenol

methyl
acetateα  terpineol

2-methyl-
phenol

2,3-buta
denione

methylbutyrateethylacetatelinalool

Figure 2.4: The diversity of odorant pulse kinetics. A common way of delivering
odorants is to prepare “cartridges” from Pasteur pipettes con-
taining 50 µL of odorant diluted in Paraffin Oil, and to force a
small volume of air through the cartridge. Odorants delivered
this way exhibit a broad range of stimulus kinetics, that depend
on the chemical identity of the odorant [113]. Each panel shows
five measurements of the kinetics of stimulus using a PID, nor-
malized by the peak. In each panel, red curves are the model fits
(eq. 2.2). The pulse duration is 500 ms. Data here is the same as
in Fig. 1b in [113].
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method reference

Did not calibrate [113, 125, 146] and others

Calibration using another device [1, 38]

Assume that odorant headspace is saturated. [16, 131]

Assume that odorant headspace is saturated,
and use a tracer gas of known concentration.

[55, 56, 95, 96]

Table 2.1: PID calibration techniques used in the literature.

2.2.2 A simple procedure to calibrate the PID to any odorant

Photo Ionization Detectors (PIDs), advantageous for their ease of use,

sensitivity and speed, do not report an absolute value of the gas

phase concentration of odorants. Since different odorants have differ-

ent ionization potentials, identical gas phase concentrations of differ-

ent odorants can lead to different measurements from the PID, and

different gas phase concentrations of different odorants can lead to

the same measurement from the PID. Calibration of the PID, the pro-

cess of converting the reported voltage into an absolute number of

molecules of odorant, is thus important if the scale of the stimulus

applied is to be taken into account. Many studies that use PIDs to

monitor gas phase concentrations of odorants do not calibrate the

PID [113, 125, 146], due to the difficulties of established calibration

techniques. Some studies have calibrated the PID by coupling the

PID with another device that can measure absolutely concentrations,

like Gas Chromatography - Mass Spectroscopy (GC-MS) devices or

flame ionization detectors [1, 38]. However, these are expensive, and

shift the problem of calibration to another device. Another approach

is to assume the odorant headspace in the olfactometer is saturated,

and use Raoult’s and Henry’s Law to estimate the gas phase concen-

tration of the odorant, and then extrapolate to fast changes reported
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by the PID. Such an approach has been used as is [16, 131] or in con-

junction with a tracer gas of known concentration [55, 56, 95, 96]. It is

not known how valid the assumption of saturated headspace is, and

using another gas of known concentration does not contribute to the

accuracy of the estimation of the absolute gas phase concentration of

the test odorant.

Here, we propose a simple method to calibrate the PID to any odor-

ant that it can detect. This method is easy to perform, does not require

additional equipment or gases of known concentration, nor does it

make any assumptions about the saturation of headspace in the olfac-

tometer. It works by depleting a known volume of pure odorant, and

integrating the total PID signal over the course of depletion. Since the

number of molecules in the pure odorant sample can be estimated

precisely (from its volume and published formula weight and den-

sity), the PID signal per unit time can be converted into the number

of molecules leaving the olfactometer per unit time.

To calibrate our PID to ethyl acetate odorant, we placed 100 µL

of pure odorant in a 30 mL scintillation vial with a screw top lid

with two tubes. One tube was fed into a clean airstream with a 2000

mL/min flow rate, and the other led to a Mass Flow Controller (MFC)

that forced air through the scintillation vial at a constant rate that

could be varied. A PID measured the gas phase concentration at the

outlet of the olfactometer, and data was collected when the air started

flowing over the odorant. The schematic of the olfactometer is shown

in Fig. 2.5a. We flowed air through the scintillation vial till all odorant

in the vial was completely depleted (which was when the PID reading

returned to the pre-stimulus level), and repeated this measurement

for a number of fixed flow rates through the scintillation vial. The

total volume of air required to evaporate the odorant decreased with

the flow rate (Fig. 2.5b), reflecting nonlinear relationships between
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Figure 2.5: PID calibration for arbitrary odorants. (a) Schematic for PID calibra-
tion. 100 µL of a pure odorant is placed in a scintillation vial,
and air is blown over it at a fixed flow rate. A PID is placed the
outlet tube close to the target (T). (b) Air required to completely
deplete the odorant as a function of flow rate. (c) PID traces from
start to complete depletion of odorant for various flow rates. (d)
Integrated PID signal as a function of flow rate. (e) Cumulative
odorant vs. time for various flow rates. (f) Odorant flux as a func-
tion of flow rate (g) Odorant flux as a function of measured PID
value, for ethyl acetate (red) and for 2-butanone (blue). The odor-
ant in (b-f) was ethyl acetate.
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the rate of evaporation and the flow rate. Correspondingly, smaller

flow rates took longer to completely deplete the odorant (Fig. 2.5c),

and peak and steady state value of the PID signal increased with

flow rate through the scintillation vial. If the PID captured all the

molecules of odorant emerging from the olfactometer, and ionized all

of them, the integrated PID signal would be a constant, independent

of the flow rate, and correspond to the total number of molecules of

odorant in the vial. However, we observed that the total integrated

PID signal decreased with the flow rate (Fig. 2.5d), an effect we at-

tributed to flow-rate dependent partial capture of odorant molecules

by the PID. To compensate for this, we fit an interpolant to this data

(Fig. 2.5d, red line), and used this to correct for variations in the total

signal. Integrating the corrected PID curves yielded curves of cumu-

lative odorant vs. time that reached approximately the same height,

corresponding to the calculated number of moles of odorant (dashed

line, Fig. 2.5e), confirming that mapping from PID signals to number

of molecules was consistent.

We then computed the odorant flux as a function of the flow rate, by

estimating the slope of the cumulative odorant curves in a relatively

stable region (Fig. 2.5f). Finally, we can combine these measurements

to plot odorant flux vs. the PID signal, to generate a function that

maps PID values onto odorant flux. Odorant flux here is reported

in units of mol/s, so constitutes an estimate of the absolute number

of molecules of odorant emerging per unit time. We repeated this

calibration process for another odorant (2-butanone), and show find

that both curves are approximately linear (Fig. 2.5g).
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2.2.3 How to deliver pulses of odorant with different intensities

The simplest olfactory stimuli that can be delivered is a short pulse of

a single odorant. Using short pulses of odorant lets experimenters de-

termine if neurons and receptors of interest respond to this particular

odorant [73, 74], and reveal their dynamical response properties [74,

113, 168]. Using short pulses of odorant with different amplitudes es-

timates the dose-response curve of that neuron, permitting the quan-

tification of its sensitivity to that odorant [19]. Typically, pulses of

odorant have been delivered by forcing air through cartridges contain-

ing a filter paper with a small quantity of odorant diluted in Paraffin

Oil. Stimulus duration is controlled by the length of time air is forced

through the cartridge, and stimulus intensity is controlled by the liq-

uid phase dilution of the odorant in Paraffin Oil. This means that

different cartridges have to be prepared for different desired stimulus

intensities, making the process potentially cumbersome. Furthermore,

since odorants contaminate the entire inner surface of the cartridge,

cartridges typically are discarded after a certain number of uses [103],

making this method wasteful. Since considerable time may elapse be-

tween cartridge preparation and application, a previous study has

found that refrigerating cartridges is required to ensure reliability [1],

further complicating this process.

Pulses of odorant delivered this way can show dramatic variation

from trial to trial, especially for volatile odorants with large vapor

pressures (Fig. 2.6, top row). In addition, different concentrations of

odorant in liquid phase can yield pulses with similar gas phase con-

centrations, confounding interpretations of responses to these stimuli

(Fig. 2.6, top row).

Here, we propose using pure odorants contained in a scintillation

vial to deliver pulses of odorant. Pulse height is controlled by varying
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Figure 2.6: How to reproducibly deliver pulses of odorant with different intensities.
(top row) Pulses delivered using a cartridge made of a Pasteur
pipette with a filter paper spotted with odorant diluted in Paraf-
fin Oil. Pulse amplitude is controlled by varying the liquid phase
concentration. (bottom row) Pulses delivered using pure odorant
in a scintillation vial. Pulse amplitude is controlled by varying
the flow through the vial. Plots show measured gas phase con-
centration using a PID vs. trial number. Colors indicate liquid
phase concentration (top row) or flow rate through the vial (bot-
tom row).
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the flow through the scintillation vial using a MFC. This approach has

several advantages over the earlier method. First, since pure odorant

is used, evaporation of the odorant does not change the effective con-

centration of the odorant that remains in the scintillation vial, and the

gas phase concentration of the headspace in the vial remains constant,

as long as there is some odorant left in the vial. Second, it greatly

simplifies the apparatus needed to deliver odorants: Pasteur pipettes,

filter papers, etc. are not needed, and there is no need to accurately

measure the amount of odorant in the scintillation vial, as the accu-

racy and precision of the pulse height is inherited from that of the

MFC. Third, pulses of several intensities can be delivered with the

same apparatus, enabling automation of experiments like measuring

the dose-response curve of a neuron. Finally, this approach creates

no waste, as all parts of the system can be re-used, including the scin-

tillation vial. When odorant is depleted, the scintillation vial can be

refilled with more pure odorant. Pulses delivered using this method

are more precise than the earlier method, and do not show any sig-

nificant decay in amplitude over 20 trials (Fig. 2.6, bottom row).

The primary reason to deliver odorant pulses of different intensities

to a neuron is to determine its dose response curve. These results

suggest that there are two approaches to this problem. First, one can

embrace the intrinsic decay in pulse amplitude associated with the

older method, and measure the stimulus and response, and use the

measured stimulus to determine the dose-response curve (as shown

in Fig. 2.2c). Second, one can use MFCs and pure odorants to generate

reproducible pulses, and utilize the unitary nature of this hardware

approach to automate the collection of data.
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2.2.4 How to deliver fluctuating odorant signals

Time series of fluctuating odorant signals have been used to as an

efficient way to characterize the response properties of ORNs. Paired

recordings of a time series of some fluctuating odorant signal and the

response of a neuron can be used to recover the linear kernel that best

describes the transformation from the stimulus to the response. Such

a linear kernel can be used to predict the time series of response of

that neuron to a novel stimulus that the neuron has not previously

been exposed to, and even to predict the response of the neuron to a

stimulus from a second odorant [113]. A favorable stimuli to use for

this is Gaussian white noise. This stimulus is Gaussian distributed,

and is uncorrelated from any one time point to another. Its tight au-

tocorrelation structure allows sampling all frequencies of the neuron

response (see §3.1 for a discussion on linear kernel extraction). Linear

filters can be estimated in an unbiased fashion even in the presence

of an output nonlinearity if the stimulus is Gaussian [32].

Odorant signals that is Gaussian and white is hard to realize in

practice. Interaction of the odorant with the walls of the delivery sys-

tem (see §2.2.1, [113]), limits on the airspeed used in the delivery

system, and finite timescales of the components of the delivery sys-

tem introduce correlations into any odorant stimulus. Furthermore,

since the easiest way to control an odorant signal is to use a valve to

divert an odorized airstream towards or away from the preparation,

early work using fluctuating odorant signals to identify linear kernels

from ORN responses used binary odorant stimuli where the stimulus

was either on or off [56, 113, 125, 150, 151]. This creates a typically a

bimodal stimulus distribution, with the lower peak close to 0, and the

larger peak at some value that can be controlled by the concentration

of the odorized airstream (Fig. 2.7a-b). The correlation time of the sig-
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Figure 2.7: Delivering fluctuating odorant signals. (a-b) Using a valve to de-
liver binary random sequences of ethyl acetate odorant. (a) Mean
ethyl acetate concentration (shading is standard error of mean).
(b) Individual traces. (c-d) Using a MFC to deliver ethyl acetate
with approximately Gaussian statistics. (c) Mean ethyl acetate
concentration (shading is standard error of mean). (d) Individ-
ual traces. (e-l) Distributions and autocorrelation functions of
stimulus time series for various odorants. Black traces are binary
random sequences delivered using a valve and red traces and
Gaussian sequences delivered using a MFC.
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nal can be controlled by varying the switching time of the valve, and

for volatile odorants that do not interact strongly with the surfaces

of the olfactometer, correlation times as fast as 30 ms can be realized

[113]. In these binary stimuli, the mean stimulus is typically rarely

realized, and the responses of the neuron are dominated by the large,

rapid increases of odorant on valve opening.

Using a MFC permits delivering odorants with more varied distri-

butions [95, 96]. Specifically, mono-modal distributions can be easily

realized. Fluctuating odorant signals can be delivered by varying the

flow rate of the MFC, and therefore the flow rate of an airstream

through a vial containing odorant (Fig. 2.7c-d). The autocorrelation

time of a stimulus delivered this way is limited by update rate of

the MFC, though multiple MFCs can be chained together in paral-

lel, driven by uncorrelated control signals, to achieve faster signals.

Odorants delivered this way typically need not “bottom out” at zero

stimulus (Fig. 2.7c-d) and have distributions that are mono-modal

(2.7e-h).

2.2.5 How to deliver Gaussian odorant signals with different means and

variances

Adaptation is a process by which the amplitude and kinetics of the

responses of a system change with the statistics of the signal pre-

sented. In principle, any moment of the stimulus distribution could

induce adaptive changes. The visual system has been shown to adapt

strongly to the first to the first two moments of stimulus distributions

– the mean and the variance – with much smaller changes in response

arising from changes in stimulus kurtosis and skew. Here, we demon-

strate how odorant stimuli that are dominated by changes in only one
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moment of the distribution can be generated, while keeping other fea-

tures of the stimulus unchanged.

The simplest way to generate odorant stimuli with varying means

is to use a MFC to vary airflows through a vial containing pure odor-

ant. We started with the ansatz that the flux of odorant in the odor-

ized airstream scales with the fraction of odorized air in the main

airstream, or the PID signal

S ⇠ Qodor

Qodor + Qmain
(2.3)

where Q represents the flow rate. We can therefore construct a set

of control signals to the MFC using eq. 2.3 and measure the result-

ing signals. Deviations in the signals can be corrected by scaling and

shifting the MFC control signals iteratively till a stimulus distribu-

tion sufficiently close to the desired distribution is achieved. A set of

odorant signals generated this way using ethyl acetate is shown in

Fig. 2.8a. Note that the time series appear correlated across intensi-

ties. Fig. 2.8b shows the distributions of these odorant stimuli, that

are approximately Gaussian. In these stimuli, the mean changes by

a factor of 10, with much smaller changes in the variance (Fig. 2.8c).

Since the temporal structure of the control signals driving the MFC

is the same across all intensities, the autocorrelation structure of the

signal is similar across intensities (Fig. 2.8d).

Experiments where the variance of the stimulus is modulated, with

a fixed mean, typically involve switching between epochs where the

variance is low and where the variance is high. A simple way to

achieve odorant signals where signal variance alternates between high

and low values is to duplicate the apparatus used previously, but

drive the two MFCs with signals identical except for their variance.

A valve can be used to switch between the two airstreams, creating

epochs with high variance (from the MFC driven with control signals
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Figure 2.8: Gaussian odorant signals with controlled means and variances. (a-d)
Gaussian ethyl acetate stimulus with varying mean. (a) Time se-
ries of stimuli with varying mean. (b) Probability distributions.
(c) Mean stimulus vs. standard deviation of stimulus for each
trial. (d) Autocorrelation functions of the stimulus for various
mean values. (e-h) Gaussian ethyl acetate stimulus with two dif-
ferent variances. (e) Time series of the stimulus. Several trials are
shown superimposed. (f) Distributions of the stimulus during
high variance epochs (5-10 s, red) and low variance epochs (0-5
s, blue). (f, inset) Distributions normalized by their standard de-
viation, showing that they are rescaled versions of each other. (g)
Mean stimulus vs. standard deviation of stimulus for each trial.
(h) Autocorrelation functions of the stimulus during the high and
low variance epochs.
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with large variance) and epochs with low variance (from the other

MFC). An example of such a stimulus is shown in Fig. 2.8e, where

the low-variance epoch lasts from 0� 5 s and the high variance epoch

lasts from 5 � 10 s. The distribution of the stimulus during the two

epochs shows that the variance is clearly different (Fig. 2.8f). If the

stimuli during the high and low variance epochs are rescaled by their

variance, the distributions collapse onto each other, showing that the

low- and high-variance stimuli are similar in distribution (Fig. 2.8f

inset). Comparing the mean and variance of the stimuli during the

two epochs (Fig. 2.8g) reveals that the means are not significantly dif-

ferent (p = 0.07) , but the variances differ significantly. Since the two

MFCs are driven by control signals that are only rescaled versions

of each other, the temporal structure of the stimulus in the low- and

high-variance epochs is similar (Fig. 2.8h).

2.3 discussion

The goal of this work was to describe how a wide variety of olfac-

tory stimuli can be generated reliably, using only two off-the-shelf

components. In this study we:

a. proposed a simple model derived from the physical interactions

odorants have with surfaces to reproduce, with only 4 parame-

ters, the wide variety of stimulus kinetics that arise from the in-

trinsic chemical identity of odorants under identical conditions

of delivery (Fig. 2.4).

b. developed a simple method to calibrate PIDs to any odorant

that it can detect, using no additional equipment (Fig. 2.5)
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c. proposed methods to deliver pulses, intermittent stimuli and

Gaussian stimuli with controlled means and variances with a

high degree of reproducibility (Figs. 2.6, 2.2.4, 2.7 and 2.8)

2.3.1 Flux or concentration detectors?

Olfactory neurons are considered to be either concentration detectors,

where receptors are directly exposed to the external stimulus concen-

tration, or flux detectors, where stimulus molecules are accumulated

in a peri-receptor compartment [91]. Are PIDs flux or concentration

detectors? The calibration technique we proposed converts PID val-

ues into a flux, since (i) in the conditions described here, a constant

flux of odorant molecules is maintained at the outlet of the delivery

tube; and (ii) the PID sucks in air at a constant rate, and constantly

removes air from the detection chamber at the same rate. Previous

studies that have calibrated PIDs have reported PID values converted

into a instantaneous gas phase concentration [95, 96, 152]. While a

constant flux of odorant molecules emerging from the delivery tube

may lead to a constant concentration of odorant at a fixed point from

the outlet (assuming steady state), the translation from flux to con-

centration is not without assumptions, and probably varies with the

geometry of the setup, and other factors. Moreover, since conserva-

tion of odorant implies that the invariant physical quantity of interest

is the flux, our calibration procedure naturally converts PID readouts

into units of flux.

2.3.2 Delivering and measuring mixtures of odorants

Odorants do not typically exist in isolation in nature. Odors consist

of mixtures of odorants, and the specific fractional composition of
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different odorants in an odor mixture can carry important informa-

tion. The measurement and delivery of mixtures of odorants is be-

yond the scope of this study, primarily because there is no unam-

biguous method to independently measure the amount of different

components of an odor mixture using a PID. Since the PID sucks in

all molecules in the airstream, and sums across all the ions in the

detection chamber, it is incapable of distinguishing between vary-

ing amounts of different odorants. Recent work, however, attempts

to work around these challenges and presents techniques to deliver

mixtures of odorants [69].



3
B L A C K B O X A N A LY S I S O F O R N R E S P O N S E S

In this chapter, I describe numerical methods I use to analyze the

responses of Olfactory Receptor Neurons (ORNs) to odorant stimuli.

These analysis methods treat the ORN as a black box, and do not ex-

plicitly model the internal states of the ORN. This black box approach

is advantageous since the precise mechanisms of ORN response are

not quantitatively understood, and this approach generates minimal

models that reproduce ORN response phenomenology quantitatively.

These methods parametrize the transformation of the time series of

the stimulus (the odorant) into the time series of the output using a

set of linear filters and nonlinear blocks. The goal of this approach

is to build phenomenological models that can describe the rules that

ORNs use to transform inputs into outputs, and to quantify features

of ORN responses.

3.1 linear kernel extraction

3.1.1 Spike triggered average and linear filters

The typical neuron receives inputs through its dendrites, either in the

form of synaptic contacts with other neurons, or through transducers

in sensory neurons. These inputs may lead to inward currents in the

neuron, that when large enough, lead to the generation of discrete, all-

or-none action potentials in the spike initiation segment, usually on

the axon hillock. Neurons fire action potentials or spikes in response

51
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Figure 3.1: Extracting linear filters from input and output time series data (a)
Gaussian white inputs (b) Responses generated by a linear model
(c) Distributions of input and output (d) Autocorrelation func-
tions of the input and the output. Note that the input is white.
(e) Covariance matrix of the time-shifted stimulus. It resembles
a diagonal matrix. (f) Comparison of actual filter, reconstructed
filter, and cross correlation.

to a continuous time series input of stimuli. What features of the stim-

ulus induce a neuron to fire spikes? One way to determine this is to

systematically play all possible stimulus inputs to the neuron, and de-

termine which stimuli are most effective in eliciting a spike. However,

since neurons integrate over time, the space of all possible stimuli is

extremely large, and this approach is impractical. An alternative is to

present Gaussian white noise to the neuron, and trigger and average

the stimulus whenever a spike is elicited. This approach is called a

spike-triggered-average of the stimulus. A generalization of this tech-

nique allows us to work with continuous outputs, such as the firing

rate of spiking neurons, or the potential of its membrane or the local

field.

Consider a system that responds to a continuous input time series

s(t) with a continuous output time series r(t). We assume that the
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system is linear, i.e., r(t) is generated by some linear operation on

s(t):

r(t) = K ⌦ s(t) =
tZ

�•

K(t � t0)s(t0)dt0 (3.1)

Our task then is to find the linear filter K̂ from the time series of s(t)

and r(t) that best predicts r(t) given s(t). In other words, we want to

minimise

��K̂ ⌦ s(t)� r(t)
��

2

Assuming that K̂ decays to zero after time t, we can estimate K̂

by deconvolving s(t) from r(t). Since s(t) and r(t) are discretely sam-

pled, this problem can be thought of as an overdetermined linear

algebra problem. First we reshape s(t) into overlapping chunks t el-

ements long, to get a matrix Ŝ with dimensions L ⇥ t where L is the

length of the time series s(t). K̂ can be solved for using

K̂ = C \ (ŜTr) (3.2)

where C is the covariance matrix of Ŝ, and ŜT is the transpose of Ŝ.

Fig. 3.1 shows estimation of a filter from synthetic data using this

technique.

3.1.2 Regularization

The method described above works well for white inputs (with d cor-

relations). What happens if correlations exist in the input? This is of

practical importance as physically achievable stimuli typically are not

perfectly white, but are correlated on timescales that relate to the un-

derlying physical process that generates them. For odorant stimuli,
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correlation times of the input can be large, based on the chemical

identity of the odorant and the details of the delivery system (see

Chapter 2for a detailed discussion).

Using white stimuli permits reliable estimation of the linear kernel

that transforms stimuli to response (Fig. 3.2a-d). Note that the auto-

correlation function of the stimulus is close to zero for all non-zero

lags, as would be expected for white noise (Fig. 3.2b). When we exam-

ine the covariance matrix of the time-shifted stimulus C (as in eq. 3.2),

we observe that it resembles a diagonal matrix, with a large numer-

ical difference between the diagonal elements and the off-diagonal

elements (Fig. (Fig. 3.2c).

What happens when we repeat the procedure using correlated stim-

ulus? This approximates stimuli that can be realized in the lab, and

an example is shown in Fig. 3.2e. The autocorrelation function of this

stimulus is not a delta function, and approaches zero only for rela-

tively large lags (Fig. 3.2f). The covariance matrix of the time shifted

version of this stimulus resembles a diagonal matrix less closely, with

a smaller difference between diagonal and off-diagonal terms (Fig.

3.2g, cf. Fig. 3.2c). Solving eq. 3.2 to recover the filter K yields a poor

estimate, with the filter contaminated by high frequency artifacts (Fig.

3.2h, cf. 3.2d). To estimate the filter under these conditions, we regu-

larize C using

Ĉ = C + rI (3.3)

where I is the identity matrix and r is a regularization factor in units

of the mean eigenvalue of C. Regularizing the covariance matrix this

way makes it appear more diagonal (Fig. 3.2i), resembling the covari-

ance matrix of the white stimulus more closely (Fig. 3.2c). The filter

extracted using this regularized covariance matrix approximates the

actual filter more closely, and is less contaminated by high-frequency

artifacts (Fig. 3.2j).
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Figure 3.2: Extracting linear filters from correlated stimuli (a-d) Extracting lin-
ear filters from uncorrelated stimulus. (a) Gaussian white stimulus
(b) Autocorrelation function of the stimulus shown in (a). Note
that it is close to zero for all non-zero lags. (c) Covariance matrix
of time shifted stimulus C (see eq. 3.2) (d) Actual filter (black)
vs. estimated filter (red). (e-j) Extracting linear filters from cor-
related stimuli. (e) Correlated stimulus. (f) Autocorrelation func-
tion of this stimulus. Note that it is non-zero for many non-zero
lags. (g) Covariance matrix of time shifted stimulus. (h) Actual
filter (black) vs. estimated filter (red) (i) Adding a scaled diago-
nal matrix to the covariance matrix makes it look more diagonal.
(j) Filter estimated from the regularized covariance matrix.

3.2 ln modeling and gain estimation

The Linear-Nonlinear (LN) model is a simple phenomenological model

where responses to stimuli are given by

r(t) = N(K ⌦ s(t))

where K is a linear filter, ⌦ represents convolution, and N is a static

nonlinearity. Since N acts on the stimulus after it has been convolved
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with the filter, it is called an output nonlinearity, and the LN model

comprises of two blocks: a linear filter, followed by a static output

nonlinearity. LN models are commonly used in neuroscience as they

provide a simple analogy to many neurons, and theoretical work has

shown that linear filters can be reliable estimated even with strong

output nonlinearities, if the stimulus is Gaussian white noise [32].

We define gain as the change in response due to a unit change in

the stimulus:

gain =
DR
DS

and is a measure of how sensitive the system is to stimuli, or how

much it amplifies a signal in its response. For systems that respond

instantly, the gain is easily estimated by presenting pulses of stimulus,

and measuring the amplitude of the response to each pulse. However,

the response of systems that integrate over time is more complicated,

and is harder to interpret. The LN model presents a clear separation

of the kinetic properties of a system from its gain: while the kinetics

of the model are captured by the linear filter K only, normalizing K

appropriately [6] can make all its gain manifest in its output nonlin-

earity N.

In the following, I demonstrate how LN modeling can be used to

estimate gain of models given time series data of the input and the

output, and no additional knowledge of the system that generated

these responses. To do this, I use two models, the Dynamical Adapta-

tion (DA) model [36] and a Nonlinear-Linear-Nonlinear (NLN) model

to generate synthetic datasets and fit LN models to them, estimating

gain in each case. The DA model is a feed-forward model, where the

stimulus is convolved with two different filters and the response is a

nonlinear combination of the two signals:
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rDA(t) =
aKy ⌦ s(t)

1 + bKz ⌦ s(t)

where Ky and Kz are two filters and a and b are two parameters. The

gain of the DA model depends nonlinearly on the parameter b. In

the NLN model, an input nonlinearity acts on the stimulus, which

is then convolved by a filter, and finally passed through an output

nonlinearity:

rNLN(t) = N(K ⌦ a(t))

where a(t) is parameterized by a simple Hill function:

a(t) =
s(t)

s(t) + KD

where KD is the half-maximum of the input nonlinearity. In the

NLN model, KD sets the sensitivity of the model, and determines the

range of stimuli it can respond to.

Varying b in the DA model generates responses that differ in mag-

nitude to the same stimulus (Fig. 3.3a). However, filters extracted for

all the models are similar (Fig. 3.3b), since the kinetic parameters of

all the models used here do not change. To visualize the effective

nonlinearity of the LN model that best fits this DA model, I plot

the response of the DA model vs. the stimulus projected through

the best-fit filters (Fig. 3.3c). These output nonlinearities resembled

curves with different slopes, each corresponding to the response of a

different DA model with a different value of b. Gain in this definition

is simply the slope of the output nonlinearity (Fig. 3.3c). Comparing

gain computed this way to the b parameter of the DA model reveals

a strong correlation (Fig. 3.3d), suggesting that LN analysis is able to

estimate gain in this synthetic data.
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Can LN analysis also estimate a meaningful gain in synthetic data

generated by a NLN model? Here, models with different sensitivities

are constructed by varying KD (Fig. 3.3e). Does the gain of best-fit LN

models recapitulate this changing KD? To determine this, I generate

synthetic data using scaled stimuli that fluctuates around the KD for

each model shown in Fig. 3.3e. The NLN model (filter shown in Fig.

3.3f) produces identical responses to these different stimulus (Fig. Fig.

3.3g), since changes in the stimulus scale are exactly compensated for

by changes in KD (by construction).

The presence of the input nonlinearity means that the estimated

filters (colored curves in Fig. 3.3h) do not exactly correspond to the

actual filter (black curve in Fig. 3.3h). Nevertheless, they are similar.

Comparing the response of the NLN model to the stimuli projected

through each estimated filter shows that the nonlinearities of best-fit

LN models are different for the different NLN models with differ-

ent KDs. In particular, responses from models with large KDs pro-

duce shallow nonlinearities, and responses from models with small

KDs produce steep nonlinearities (Fig. 3.3i). Comparing the gain (the

slope of the nonlinearities in (i)) to 1/KD revels a strong correlation,

suggesting that LN analysis can be used to estimate gain even when

the underlying model has significant front-end nonlinearities.
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Figure 3.3: Using a LN model to determine gain from input-output data. (a-d)
Gain estimation using synthetic data generated by a DA model
[36]. (a) Responses of a set of DA model with different b pa-
rameters to the same stimulus. (b) Linear kernels fit to stimulus
and response data. (c) DA model responses vs. linear projections
of the stimulus using the estimated filters in (b). (d) Gain (the
slope of the curves in (c) vs. 1/b for each model. (e-j) Gain es-
timation using synthetic data generated by a Nonlinear-Linear-
Nonlinear (NLN) model. (e) The half maximum KD of the in-
put nonlinearity is varied in this model. (f) Linear filter of NLN
model. (g) Responses of NLN models with varying KD are iden-
tical because the input stimulus is scaled by KD. (h) Estimated
linear kernels (colors) cf. actual filter (black). (i) NLN model re-
sponses vs. linear projections of the stimulus using the estimated
filters in (h). (j) Gain (slopes of curves in (i) vs. 1/KD of the vari-
ous models shown in (e).
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O L FA C T O RY R E C E P T O R N E U R O N S U S E G A I N

C O N T R O L A N D C O M P L E M E N TA RY K I N E T I C S T O

E N C O D E I N T E R M I T T E N T O D O R A N T S T I M U L I

4.1 introduction

Odor landscapes that insects navigate are often not smooth gradients

[29, 142]. Instead, turbulent airflows shape odor plumes into intermit-

tent whiffs randomly separated by periods of background air (blanks).

In the absence of reliable spatial gradients, navigating insects may use

the timing of whiff encounters [174], combined with other sensory

modalities such as mechanosensation to detect wind direction [21, 29,

48], to navigate odor plumes towards mates and food. Insect olfac-

tory systems face dual challenges in detecting natural odor plumes.

First, the intensity of whiffs is typically distributed according to a

power law [119], with intense whiffs interleaved unpredictably with

weak ones [142]. This requires the insect to represent a very large do-

main of stimulus intensity using a relatively narrow response range

of its sensors. Second, whiff durations and blank durations are also

distributed as a power law over a wide range of time scales [30]. This

lack of characteristic scale in the intensity and timing of whiffs makes

it challenging to precisely detect and encode individual odor whiffs.

The encoding problem is aggravated by shifting local statistics of odor

encounters, which change with wind speed [123, 125], position [89],

or environment [121]. How does the olfactory system manage to en-

61
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code whiffs of odors whose intensities and timing can vary over such

wide ranges?

Several features of the olfactory system contribute to encoding odor

stimuli of different intensities. A single odorant can be detected by

multiple receptor types, with different sensitivities [73] and static

compressive nonlinearities at both Olfactory Receptor Neuron (ORN)

and their post-synaptic targets, the Projection Neuron (PN), selec-

tively amplify weak signals and suppress responses to large signals

[12, 19]. Glomerular mechanisms implement a type of divisive gain

control that maintains PN sensitivity within the range of changing

ORN responses [12, 110, 128, 129]. Finally, transduction currents in

response to odor pulses scale inversely with the intensity of the back-

ground signal, consistent with the Weber-Fechner Law [26]. How-

ever, whether ORN firing follows a similar scaling is unclear [25,

113]. Thus, although the input-output curve of ORNs to odor stim-

uli changes with odor background, the precise scaling of ORN gain

control from stimulus to firing rate has not been characterized.

Olfactory responses in insects can be fast. Transduction can be ini-

tiated within milliseconds of odor reaching the antenna [170]. The

speed of the response is enhanced by ORN spike generation, which

emphasizes changes in transduction currents [125], and by PNs [95],

which maintain fast information transmission from ORNs to PNs

[124, 135]. In contrast, adaptation to high intensity stimuli slows down

transduction [26, 92, 125], a property that might make it difficult to

reliably encode the timing of odor encounters.

We investigated in vivo how Drosophila ORNs encode encounters

with naturalistic odor plumes, which possess the dual complication

that both whiff intensities and whiff timing are broadly distributed.

To address this question, we first developed an odorant delivery sys-

tem that reproducibly delivered odorants with naturalistic statistics,
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or approximately Gaussian statistics with controlled means and vari-

ances. We simultaneously recorded the odorant stimulus (using a fast

Photo Ionization Detector (PID)) and recorded extracellularly from

identified ORNs. In these studies, we focused on the phenomenol-

ogy of odorant encoding, which can help to constrain the potential

molecular mechanisms that implement them. We found that in re-

sponse to naturalistic stimuli, ORNs employed front-end nonlineari-

ties inherent in receptor saturation to encode broadly distributed sig-

nals. In addition, ORNs could rapidly desensitize following encoun-

ters with odorant whiffs, dynamically adjusting gain while respond-

ing to intermittent odorant stimuli. On increasing the mean stimulus

background, ORNs decreased gain inversely with stimulus intensity,

consistent with the Weber-Fechner Law. This phenomenon could be

explained if the disassociation constant K of odorant binding scaled

with the mean stimulus intensity. Supporting this model, we found

that gain control to changes in mean was localized to LFP signals,

suggesting that adaptation occurs at transduction in the ORNs, with

little contribution from spiking machinery. ORN gain also changed

in response to changes in stimulus variance, with gain changes dis-

tributed equally across transduction and spiking. Even though the

transduction response time slowed down with increasing stimulus

intensity, the spiking machinery sped up to compensate. The result

of these complementary kinetic changes was that the firing rate re-

sponse time remained invariant with stimulus intensity, revealing a

mechanism that could allow ORNs to preserve information about the

precise timing of odor encounters over a wide range of rapidly chang-

ing signal intensities.
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4.2 results

4.2.1 ORN responses to broadly distributed naturalistic stimuli.

Odorant signals used to study ORN adaptation typically consist of

long pulses or constant backgrounds of various intensities [25, 26, 113,

125]. However, airborne stimuli encountered by flying insects can be

intermittent with both the intensities of encounters and durations be-

tween encounters broadly distributed as power laws [30]. Since ORN

transduction can be adapted by odorant pulses as brief as 35 ms on

timescales as fast as 500 ms [26], we asked if ORNs could change their

gain dynamically during responses to naturalistic stimuli, amplifying

responses to isolated whiffs of odorant, and suppressing responses to

whiffs following dense clumps of whiffs.

We measured the responses of ab3A and ab2A ORNs to naturalistic

stimuli of ethyl acetate and 2-butanone, odorants that elicits spikes

in these neuron types [73], and are easy to control and measure [113].

We used in vivo extracellular recording with simultaneous measure-

ment of the stimulus to record both the Local Field Potential (LFP)

and spikes from a single sensillum. Previous results have shown that

LFP responses are unaffected by the addition of Tetrodotoxin (TTX),

which eliminates neural spiking, and are unaffected when the neu-

ron’s partner cell in the sensillum is genetically ablated, when that

partner does not sense the odorant [125]. This means that the LFP

signal is generated by the sensing neuron, and is upstream of spik-

ing machinery under the conditions tested. We therefore used LFP

recordings as an imperfect but useful proxy for transduction activity

in ORNs [87, 93, 125, 169].

The naturalistic stimulus we used was intermittent and consisted

of brief odor whiffs of varied amplitude (Fig. 4.1a-b). Durations of
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Figure 4.1: Adaptation and saturation modulate ORN responses to broadly dis-
tributed naturalistic stimuli. (a) Ethyl acetate odorant (top) elicits
LFP (middle) and firing rate (bottom) responses from a ab3A
ORN. (b) (a) 2-butanone odorant (top) elicits LFP (middle) and
firing rate (bottom) responses from a ab2A ORN. (c) ab2 LFP re-
sponses vs. projected stimulus. (d) ab2A firing rate vs. projected
stimulus. (c) and (d) show that ORN responses differ signifi-
cantly from linearity. (e) ab2 LFP responses vs. whiff amplitude.
(f) ab2A firing rate vs. whiff amplitude. n = 15 trials from 2 ORNs.
101 whiffs shown in (e-f).

whiffs and blanks were broadly distributed, with a power law of ex-

ponent -3/2 to match natural intermittent statistics of odor plumes

[30] (Fig. 4.2a-c). ab2A and ab3A ORNs responded to whiffs with

transient decreases in the local field potential (LFP) and correspond-

ing increases in the firing rate (Fig. 4.1a-b).

Even though individual whiff intensities were broadly distributed

(1st lines in Fig. 4.1a-b) ORN responses to these whiffs were more

even, so that responses to faint whiffs were amplified more than those

to intense whiffs. To quantify these differences, we defined the gain

of the neuron to be the change in the response for a unit change in

the stimulus. Since ORNs do not respond instantaneously to odorant

stimuli [19, 20], we fit linear filters to best predict the LFP and firing
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Figure 4.2: Statistics of the ethyl acetate stimulus with naturalistic temporal struc-
ture. (a) Distribution of whiff intensities. (b) Distribution of whiff
durations. (c) Distribution of blank durations. Predicted distribu-
tions from [30] are shown in red lines (a-c). c is the odor concen-
tration (whiff intensity). tw and tb are whiff and blank durations.
(d) Mean vs. standard deviation of stimulus, computed in 400 ms
non-overlapping blocks. (e) Correlation between mean and stan-
dard deviation of stimulus as a function of window length. Peak
correlation observed for timescales ~400 ms. (f) Autocorrelation
function of the stimulus. Shading indicates standard deviation
across trials.
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rate from the stimulus. We used these filters to make linear predic-

tions of the responses from the stimuli (Fig. 4.3). Changes in gain

were therefore defined as deviations from the linear prediction of re-

sponse from the stimulus, similar to [6, 97]. We visualized these gain

changes by plotting the LFP responses against linear prediction of the

LFP (Fig. 4.1c) and the firing rate against the linear prediction of the

firing rate (Fig. 4.1d). Each excursion in these plots corresponds to

the ORN’s response to a single whiff. Excursions occurred with dif-

ferent slopes, suggesting that ORN gain changed frequently in time.

Deviations from linearity persisted even when filters computed from

Gaussian inputs were used to project the stimulus, suggesting that

the existence of these deviations do not depend on the exact shape

of the filter, but rather reflect a property of the ORN response not

captured by the linear model (Fig. 4.3).

Variations in the gain clearly do not arise from a static output non-

linearity, such as one associated with a static linear-nonlinear trans-

formation [42] (Fig. 4.1c-d). We reasoned that changes in the gain

could arise from input nonlinearities due to odor-receptor binding

and channel opening. To visualize the nonlinearity between the stim-

ulus and response, we plotted LFP and firing rate responses to each

whiff in the naturalistic stimulus as a function of the amplitude of

that whiff (Fig. 4.1e-f). A clear sigmoidal function is visible in the plot

of LFP responses against whiff intensity, consistent with a front-end

nonlinearity arising from receptor-odorant binding. However, in both

the LFP and firing rates, responses to whiffs with similar intensities

varied significantly, deviating from a single sigmoidal dose-response

curve (Fig. 4.1e-f).

What causes these deviations from the dose-response curve? The

simplest explanation is that these deviations are due to random vari-

ability in the responses of the neuron. Another possibility is that these
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Figure 4.3: Deviations from linearity persist even when filters extracted from Gaus-
sian stimuli are used to project naturalistic stimulus. (a) LFP fil-
ters for ab2A ORNs responding to 2-butanone, extracted either
form naturalistic stimuli (black) or from Gaussian stimuli (red).
(b) LFP responses to naturalistic stimulus vs. stimulus projected
through filter computed from naturalistic stimulus (Black filter
in (a)). (c) LFP responses to naturalistic stimulus vs. stimulus
projected through filter computed from Gaussian stimulus (red
filter in (a)). (d) Firing rate filters for ab2A ORNs responding to
2-butanone, extracted either from naturalistic stimuli (black) or
from Gaussian stimuli (red). (e) Firing rate responses vs. stimu-
lus projected through filter computed from naturalistic stimulus
(black filter in (d)). (f) Firing rate responses vs. stimulus projected
through filter computed from Gaussian stimulus (red filter in
(d)).
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deviations are due to variations in the stimulus history preceding

each whiff. To test this hypothesis, we collected whiffs that had simi-

lar amplitudes, and examined the LFP and firing rate responses they

evoked (Fig. 4.4a-b). The amplitude of LFP and firing rate responses

elicited by these whiffs varied inversely with the amplitude of the

preceding stimulus: whiffs that occurred in isolation (purple) elicited

the largest responses, while whiffs that followed earlier, large whiffs

(blue, red) elicited the smallest responses, suggesting that ORN re-

sponses can be modulated by stimulus history.

To quantify this context-dependent modulation, we estimated de-

viations of the LFP and firing rate response to each whiff from the

median response. Deviations in LFP response to each whiff decreased

with mean stimulus in the preceding 300 ms (Fig. 4.4c, r = �0.39, p =

0.01 , Spearman test), and were uncorrelated with the amplitude

of the whiff that elicited them (Fig. 4.4c, inset,p = 0.9 , Spearman

test). Similarly, deviations in the firing rate responses to each whiff

decreased with mean stimulus in the preceding 300 ms (Fig 4.4d.

r = �0.68, p < 10�5, Spearman test), and were uncorrelated with the

amplitude of the whiff that elicited them (Fig. 4.4d, inset, p = 0.37,

Spearman test).

To generalize beyond a particular timescale of the stimulus history,

we parametrized the stimulus history of each whiff by the amplitude

and time since the preceding whiff, and grouped estimated devia-

tions from the median response into positive or negative (Fig. 4.4e-f).

When response deviations were negative (smaller than median re-

sponses, blue dots), the amplitude of the preceding whiffs tended to

be larger, and the time since the previous whiff tended to be shorter.

When response deviations were positive (red dots), the amplitude of

preceding whiffs tended to be smaller, and the time since the previ-

ous whiff tended to be longer (p = 0.01, 2-dimensional KS test on
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Figure 4.4: Adaptation and saturation modulate ORN responses to broadly dis-
tributed naturalistic stimuli. (a) Ethyl acetate whiffs of similar size
(top) elicit ab3 LFP responses (middle) and ab3A firing rate
responses (bottom) with different amplitudes. (b) 2-butanone
whiffs of similar size (top) elicit ab2 LFP responses (middle) and
ab2A firing rate responses (bottom) with different amplitudes.
Bar graphs in (a) and (b) show that ordering in LFP and firing
rate response does not correlate with whiff amplitude, but corre-
lates with the intensity of the preceding whiff. Deviations in LFP
(c) and firing rate responses (d) from the median response vs.
mean stimulus in the preceding 300 ms. Deviations in LFP (c, in-
set) and firing rate responses (d, inset) from the median response
vs. whiff amplitude. (e) LFP response deviations (positive: red,
negative: blue) as a function of the amplitude of the previous
whiff and the time since previous whiff. Positive and negative
deviations are significantly different (p = 0.01, 2-dimensional KS
test) (f) Firing rate response deviations (positive: red, negative:
blue) as a function of the amplitude of the previous whiff and
the time since previous whiff. Positive and negative deviations
are significantly different, (p = 0.001, 2-dimensional KS test on
firing rate deviations).
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LFP deviations, p = 0.001, 2-dimensional KS test on firing rate devia-

tions).

What causes this context dependent suppression of responses fol-

lowing preceding whiffs? One possibility is a bilobed filter, with one

positive and one negative lobe. Such a filter is partly differentiating,

and would lead to attenuated responses to the second of two closely

spaced whiffs, and has been measured in linear models of the firing

rate [96, 113, 125]. Such a mechanism may partly account for context

dependent variation in firing rates. However, stimulus to LFP filters,

computed for this stimulus and others, are mono-lobed (Fig. 4.5), and

purely integrating [125], ruling out contributions to dynamic modula-

tion of LFP responses by this mechanism. A model with a static front-

end nonlinearity and a mono-lobed filter fit to the LFP also cannot re-

produce context-dependent adaptation observed in the LFP (Fig. 4.5),

suggesting that this context-dependent variation in response arises

at least in part from ORNs dynamically varying gain in response to

naturalistic stimuli.

Since the mean and variance of naturalistic stimuli are correlated

over many timescales, (Fig. 4.2), it is unclear whether adaptation in

this context is sensitive to the mean or the variance (or to some other

statistic) of preceding whiffs. To determine how changing one mo-

ment of the stimulus distribution changed ORN gain, and to dis-

ambiguate the effect of receptor saturation from adaptation, we pro-

ceeded to other experiments using Gaussian stimuli with changing

means (Fig. 4.6) and variances (Fig. 4.9).
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Figure 4.5: An NLmodel (static input nonlinearity followed by a linear filter) can-
not reproduce context-dependence of LFP responses to similar-sized
whiffs. Input nonlinearity (a) and filter (b) fit to ab2 LFP re-
sponses to 2-butanone naturalistic stimulus. The input nonlinear-
ity is a Hill function ( S

S+KD
) where S represents the input, and KD

the half maximum value). The nonparametric filter and paramet-
ric nonlinearity are fit simultaneously in an iterative manner (see
Methods). (c) Comparison of ab2 LFP responses and NL model
predictions. (d) Linear filter extracted from the stimulus and the
NL model prediction. Note that the filter is not the same as in
(b); a filter extracted from an NL model is not guaranteed to be
an unbiased estimate of the true one. (e) NL model responses vs.
naturalistic stimulus projected through filter in (d), showing that
the NL model shows deviations from linearity similar to what
is observed in the data (cf. Fig. 4.1c). (f-g) Context dependence
of response in the ab2 data and model. (f) ab2 LFP responses
to whiffs of similar size (same data as in Fig. 4.4). Note that the
responses to isolated whiffs (purple, yellow) are larger than the
responses to repeated whiffs (red, blue). (g) NL model responses
to these whiffs. Note that the responses to isolated whiffs (pur-
ple, yellow) are smaller than the responses to repeated whiffs
(red, blue), the opposite of the trend visible in the data.
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4.2.2 ORNs adapt to stimulus background by decreasing gain according

to the Weber-Fechner Law

A common strategy used by sensory systems to encode signals over

a broad range of background intensities is to scale the response ac-

cording to Weber-Fechner’s Law [165], i.e. to control gain inversely

with stimulus mean. In ORNs, transduction currents elicited by odor-

ant pulses are reduced by preceding pulses [125] and scale inversely

with background intensity, consistent with Weber-Fechner’s law [25,

26]. It remains unclear whether the ORNs’ ultimate output — the

firing rate — follows the same Weber-Fechner scaling [25, 113]. We

therefore stimulated ab3A ORNs with a set of fluctuating ethyl ac-

etate stimuli with increasing means (Fig. 4.6a) but roughly constant

variances (Fig. 4.6b, 4.7a). ORNs responded to the stimulus with the

smallest mean by modulating firing rates between 0-60Hz (Fig. 4.6c).

This response range progressively decreased on increasing mean stim-

ulus intensity (Fig. 4.6d), though the mean response remained at ~30

Hz. To estimate ORN input-output curves, we plotted ORN responses

vs. the stimulus projected through the normalized best-fit linear fil-

ter for each stimulus, estimated through least-squares fitting [32, 43,

140] (Fig. 4.6e). Input-output curves grew shallower with increasing

mean stimulus. We defined the ORN gain to be the slope of the input-

output curve at that mean stimulus [6].

ORN gain in each trial varied with the mean stimulus in that trial

as an approximate power law with exponent –1 (Fig. 4.6f). ORN

gains could also be estimated by the ratio of standard deviation of

the response to the standard deviation of the stimulus. This measure

yielded similar values of ORN gain, and also decreased as a power

law with exponent -1 (Fig. 4.7b). This exponent is consistent with the

Weber-Fechner Law, which postulates that the just noticeable differ-
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Figure 4.6: ORNs decrease gain with stimulus mean, consistent with the Weber-
Fechner Law. (a) Ethyl acetate stimuli with different mean inten-
sities but similar variances. Stimulus intensity measured using a
PID, units in Volts (V). Colors indicate mean stimulus intensity.
(b) Corresponding stimulus distributions. (c) ab3A firing rate re-
sponses to these stimuli. (d) Corresponding response distribu-
tions. (e) ORN responses vs. stimulus projected through linear
filters. Colored numbers indicate r2 between linear projections
and ORN response. (f) ORN gain vs. mean stimulus for each
trial. Red line is the Weber-Fechner prediction (g) After rescaling
the projected stimulus by the gain predicted by the red curve in
(f), and correcting for an offset, ORN responses collapse onto one
line. n = 55 trials from 7 ORNs in 3 flies. All plots except (f) show
means across all trials. (f) shows individual trials.
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ence between two stimuli is inversely proportional to the stimulus

magnitude [165]. Rescaling the projected stimulus by the gain pre-

dicted by Weber’s Law collapsed all input-output curves onto a single

curve (Fig. 4.6g).

Can front-end or back-end nonlinearities reproduce the observed

change of input (stimulus)-output (firing rate) curves (Fig. 4.6e)? Clearly,

no single output nonlinearity can fit the data shown in (Fig. 4.6e).

Since a front-end nonlinearity is present (Fig. 4.1), we asked whether

a nonlinear-linear (NL) model could reproduce this data, with the in-

put nonlinearity parameterized by a Hill function where s represents

the input, and K the half maximum value. (Fig. 4.8a-c). NL model re-

sponses increased with mean stimulus (Fig. 4.8c), unlike in the data

(Fig. 4.6d-e). However, if the half maximum value of the Hill function

was allowed to vary with the mean stimulus, the model could qual-

itatively reproduce the data, suggesting adaptation at the front-end

nonlinearity (Fig. 4.8d-f).

To determine if similar gain-control relative to mean signal inten-

sity was broadly observed, we tested additional ORNs from the two

major olfactory organs of the fly, the antenna and the maxillary palp

(ab2A, pb1A), and used ecologically relevant odorants from three dif-

ferent functional groups (ketones: 2-butanone, alcohols: 1-pentanol,

esters: isoamyl acetate) in various combinations. In all five cases, the

neurons decreased gain with increasing odorant concentration, and

obeyed a roughly inverse scaling (Fig. 4.7c-f). Thus in vivo, for various

neurons and odorants, ORN firing rate followed the Weber-Fechner

Law.
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Figure 4.7: Weber-Fechner Law broadly observed across odor-receptor combina-
tions. (a) Standard deviation vs. mean of ethyl acetate stimulus
in Fig. 4.6. (b) ORN gain estimated by the ratio of standard de-
viation of firing rate to standard deviation of stimulus, vs. mean
stimulus in each trial. This model-free estimate of ORN gain ig-
nores kinetics of response, but returns similar estimates of the
gain (cf. Fig. 4.6f). Note that the units of gain estimated this way
are the same. (c-f) ORN gain as a function of mean stimulus for
various odor-receptor combinations. In all plots, the red line is a
power law with slope -1 (the Weber-Fechner Law). Data in panel
a and b is the same as in Fig. 2. n = 121 trials from 16 ORNs in 6

flies.
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Figure 4.8: Ability of NL models to reproduce observed change in input-output
curves. (a-c) static NL model responses. (a) The input nonlinearity
of NL model is chosen to be a Hill function with n = 1. (b) Filter
of NL model, measured directly from the data. (c) NL model
responses vs. projected stimulus. While these curves appear to
change slope with increasing mean stimulus, mean responses
also tend to increase (purple . . . yellow). (d-f) Varying NL model
responses, where the KD of the input nonlinearity is allowed to
vary with the mean stimulus. (d) Input nonlinearities for stimuli
with different mean (colors). The KD of each curve is set to the
mean stimulus of that trial. (e) Filter of NL model, same as in
(b). (f) Model responses vs. projected stimulus. Note that, like
in the data (cf. Fig. 4.6e), the mean response remains relatively
invariant with mean stimulus, and that curves get shallower with
increasing mean stimulus.



4.2 results 78

4.2.3 Fast variance-dependent gain control in ORNs

In other sensory modalities, such as vision, some neurons adapt not

only to the mean but also to the variance of the signal [6, 140]. We

therefore asked whether ORNs adjust their gain in response to changes

in the variance of the signal. We stimulated ab3A ORNs with fluctuat-

ing ethyl acetate stimuli in which the variance of the signal changed

every 5 s (Fig. 4.9a), switching back and forth between high to low

values, around a nearly constant mean (Fig. 4.9b; 4.10a), a protocol

used to study gain control in visual neurons [6, 54, 140].

As expected, ORNs responded to input fluctuations by modulating

their firing rate. Interestingly, ORN firing rate variance did not vary

as much as the stimulus variance between epochs of high and low

stimulus variances, suggesting that ORNs actively changed their gain

to compensate for such input differences (Fig. 4.9c-d). ORN input-

output curves during high variance epochs (red) were shallower than

during low variance (blue) epochs (Fig. 4.9e). Trial-wise ORN gain

decreased with the variance of the stimulus (Fig. 4.9f). ORN gains

estimated by dividing the standard deviation of the response by the

standard deviation of the stimulus showed a similar decrease in ORN

gain with stimulus variance (Fig. 4.10b).

A simple coding strategy maximizes a neuron’s information capac-

ity by matching its input-output curve to the cumulative distribution

function (c.d.f) of the stimulus [104]. Like the c.d.f.s (dashed lines), the

input-output curves (solid) are steeper during the low variance epoch.

On a trial-by-trial basis, ORN gain was correlated with the c.d.f slope

(r2 = 0.7) (Fig. 4.9g). However, as the input variance changed by a

factor of 2.5, the gain in the neuron only changed by a factor of 1.7,

not as much as would be required for optimal information encoding.
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Figure 4.9: ORNs decrease gain with stimulus variance. (a) Stimulus intensity
of a fluctuating ethyl acetate stimulus with nearly constant mean
but a variance that switches between high and low every 5 sec-
onds. 5 independent trials (out of 248) are plotted. (b) Distribu-
tions of stimulus intensity for the epochs of low (blue) and high
(red) variance. (c) ab3A firing rate responses corresponding to
the trials shown in (a) following the switch from low to high
variance, which takes place at t = 0 s and from high to low,
which takes place at t = 5 s. (d) Probability distributions of the
response. (e) Solid lines are ORN input-output curves computed
from a single filter from both low (blue) and high (red) variance
epochs. Dashed lines are the cumulative distribution functions
(c.d.fs) of the projected stimulus. (f) ORN gain as a function of
the standard deviation of the stimulus, measured per trial for
each epoch. (g) Measured gain plotted against the slope of the
cumulative distribution function for each trial. (h) Instantaneous
gain (blue) and stimulus contrast (orange) as a function of time
since switch. Dashed lines indicate crossover times of stimulus
contrast and instantaneous gain. The delay is ~130 ms. n = 248
trials from 5 ab3A ORNs in 2 flies.
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Figure 4.10: Variance gain control in Gaussian stimuli. (a) While the dominant
change between the two epochs is the change in variance (by
construction), the low variance trials also tend to have slightly
higher means. (b) ORN gain estimated by dividing the standard
deviation of the response by the standard deviation of the stim-
ulus, for each trial, vs. the standard deviation of the stimulus
(cf. Fig. 4.9f). (c) Input-output curves for the ab3A ORN uncor-
rected for the change in the mean stimulus. The blue curve inter-
sects the red curve, and is steeper than the red curve, suggesting
that gain during the low variance epoch is higher than the gain
during the low variance epoch. (d) ORN gain during high and
low variance epochs, without correcting for the change in the
mean stimulus. Each trial appears in the plot as one blue point
(for the low variance epoch) and one red point (for the high vari-
ance epoch). (e) Filters used in this analysis. Filters backed out
of low variance (blue) or high variance (red) epochs alone are
very similar. Therefore, we averaged all filters (black) and used
that averaged filter to project all the stimulus in this dataset.
(f) Coefficient of determination (r2) vs. the standard deviation
of the stimulus. ~80% of trials had r2 > 0.8. (g) Coefficient of
determination (r2) vs. trial-wise ORN gain in the high and low
variance epoch. Dashed lines in (f-g) indicate the median during
the high and low variance epoch.
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Gain control to the stimulus variance was fast, with gain changing as

fast as ~130 ms following the change in stimulus variance (Fig. 4.9h).

4.2.4 Mean and variance gain control occur at different stages of odor en-

coding, and are mechanistically distinct

ORN responses arise through two sequential steps: odor transduction

followed by spike generation [125]. Does each step possess separate

gain control mechanisms, or is gain control achieved solely at one

step? Previous studies place the mechanism of adaptation to mean

stimulus at the level of signal transduction [25, 26, 125]. How the spik-

ing machinery might influence gain control, and where adaptation to

signal variance takes place, remain unknown.

We reanalyzed the responses of ab3A to ethyl acetate signals (Figs.

4.6&4.9) and measured “transduction gain” (stimulus to LFP) and

“firing gain” (LFP to firing rate). Changing the stimulus mean alone

modified gain in LFP (Fig. 4.11a-b). However, gain at the spiking ma-

chinery was invariant to the ten-fold change in the mean stimulus.

(p = 0.41, Spearman rank correlation), with a 1 mV change in LFP

leading to a ~10 Hz change in the firing rate, consistent with earlier

studies[125] (Fig. 4.11c-d). Transduction gain, like ORN gain, scaled

with the Weber-Fechner Law, for a variety of odor-receptor combina-

tions (4.12a-d), consistent with previous studies [25, 26]. In contrast,

adaptation to the stimulus variance changed gain both at transduc-

tion and at spiking (Fig. 4.11e-h). Both gains changed by a factor of

~1.3 from the high to the low variance epoch (p < 10�4, Wilcoxon

signed rank test), contributing roughly equally to variance gain con-

trol (Fig. 4.12f). In other systems such as vision, variance gain control

has been traced down to the spiking machinery and single neuron

Hodgkin-Huxley models have been shown to exhibit variance gain
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Figure 4.11: Mean gain control occurs primarily at transduction, and variance
gain control occurs both at transduction and at the firing machinery.
(a) Transduction input-output curves from stimulus to LFP. Col-
ors indicate increasing mean stimulus. Filters and projections
are computed trial by trial. (b) Transduction gain, measured
from the slopes of these input-output curves, decreases with
the mean stimulus. The red line is a power law with exponent -
1, (Weber’s Law). (c) Input-output curves for the firing machine
module. (d) Firing gain does not change significantly with mean
stimulus. (e) Transduction input-output curves for low (blue)
and high (red) variance stimuli. (f) Transduction gains in the
low variance epoch are significantly higher than transduction
gains in the high variance epoch (p < 0.001, Wilcoxon signed
rank test) (g) Input-output curves of firing machinery during
low variance stimuli. (g) Firing gain during low variance epochs
are significantly higher than firing gains during high variance
epochs (p < 0.001, Wilcoxon signed rank test). Projections of
stimulus are divided by the mean stimulus in each trial to re-
move the small effect Weber-Fechner gain scaling. Data in this
figure is same as in Figs. 4.6 and 4.9. (a,c,e,g) Mean across all
trials. (b,d,f,h) Individual trials.
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Figure 4.12: Mean and variance gain control at transduction and spiking. (a-d)
Gain due to changing the mean stimulus. Transduction gain as
a function of mean stimulus for different odor-receptor com-
binations. Red lines are power laws with exponent -1 (Weber-
Fechner prediction). (e-f) Comparison of gain changes at trans-
duction and firing due to changes in stimulus variance. (e) Trial-
wise overall gain fold change (gtotal = ORN gain at low vari-
ance/ORN gain at high variance) vs. trial-wise product of gain
fold changes at transduction (gL) and firing (gF). (f) Compar-
ison of average fold change in gain due to changing stimu-
lus variance. Pie chart shows relative contribution (in percent)
of transduction gain change (purple) and firing gain change
(green) to overall gain change.

control to current injection. It is interesting that in ORNs transduc-

tion gain changes are also involved in contrast adaptation.

Adaptation of ORNs to the mean stimulus and their Weber-Fechner

gain control may be mediated by a feedback mechanism involving a

slow diffusible factor such as calcium, which has been suggested to

be involved in other types of adaptation [125]. Decreasing extracel-

lular calcium has been shown to abolish ORN adaptation to steps

of odorant and cause deviations away from the Weber-Fechner Law

[26], suggesting that ORN activity can cause an influx of calcium that
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leads to ORN adaptation. To test this hypothesis, we measured intra-

cellular calcium concentrations by measuring fluorescence changes

in ab3A ORNs expressing the calcium reported GCaMP6 [31]. We

found that GCaMP6 fluorescence increased with increasing odorant

stimulus, supporting a role of calcium influx in ORN adaptation to

the mean stimulus (Fig. 4.13). In contrast, changing stimulus variance

but keeping the stimulus mean the same did not significantly change

GCaMP6 fluorescence between high- and low-variance epochs (Fig.

4.14), suggesting that mean and variance gain control are mechanisti-

cally distinct.

4.2.5 Modularity of gain control at transduction and spiking

Since spiking occurs downstream of transduction, Weber-Fechner gain

scaling at transduction ensures that fluctuations in the input to the

spiking machinery occur at the same scale, independent of the scale

of the stimulus. Can spiking gain change to amplify or suppress trans-

duction responses? To decouple the overall drive to the neuron from

Weber-Fechner gain control at transduction, we expressed Chrimson

channels [98] in ab3A ORNs and activated them using red light.

First, we used a fluctuating ethyl acetate stimulus to probe trans-

duction and ORN gain while increasing the neuron’s firing rate us-

ing increasing backgrounds of red light (Fig. 4.15a-b). While increas-

ing light levels elicited increasing firing rates (Fig. 4.15b inset), ORN

and transduction gain did not vary with the intensity of supplemen-

tal light (Fig. 4.15a-b). This suggests that constitutive spiking activity

does not feed back onto LFP adaptation, or overall ORN gain.

Second, we used a fluctuating light stimulus to probe the spiking

gain while stimulating the ORN and its receptors with increasing

backgrounds of ethyl acetate odorant (Fig. 4.15c-d). While ethyl ac-



4.2 results 85

Figure 4.13: Intracellular Calcium increases with odor concentration. (a) Fold
change in fluorescence from regions of interests (ROIs) over
ab3 sensilla in w; 22a-GAL4/+; UAS-GCamp6f/+ flies. Colors
indicate odorant concentration applied (purple. . . yellow). Gray
trace is from a control application with no odorant. Odorant
was applied for 5 second from t = 5 s to t = 10 s. (b) GCamp6f
fluorescence fold change as a function of peak stimulus, for
ROIs over ab3 sensilla (red) and for control ROIs (black). (c) Pre-
stimulus fluorescence vs. peak stimulus of odorant stimulus. (d)
Rising timescale of Calcium signals in (a) vs. peak stimulus (see
Methods). (e) Off timescale of Calcium signals in (a) vs. peak
stimulus (see Methods).
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Figure 4.14: Intracellular Calcium does not change with stimulus variance. (a)
Odorant stimulus applied, consisting of alternating 5 s epochs
of low variance (0 - 5 s) and high variance (5 - 10 s). (b) Rela-
tive fold change of GCamp6f fluorescence from ROIs over ab3

sensilla in w; 22a-GAL4/+; UAS-GCamp6f/+ flies. (c) Relative
fold change of GCamp6f fluorescence from ROIs over control
regions outside sensilla in w; 22a-GAL4/+; UAS-GCamp6f/+
flies. (d) Mean stimulus vs. standard deviation of stimulus for
low variance epochs (blue) and high variance epochs (red). (e)
Relative fold change in GCamp6f fluorescence from ROIs over
ab3 sensilla between high-variance epochs and low-variance
epochs. No significant change was observed (t-test, p = 0.52).
(f) Relative fold change in GCamp6f fluorescence from control
ROIs between high-variance epochs and low-variance epochs.
No significant change was observed (t-test, p = 0.71).
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etate backgrounds of increasing intensity increased ORN firing rate

(Fig. 4.15d inset), they failed to change gain in the spiking machinery.

Increasing odor backgrounds moved input-output curves along the y-

axis (Fig. 4.15c), consistent with increasing firing due to background

odor, but failed to change the slope of these curves, suggesting that

ORN gain to the fluctuating light probe was not changed. This sug-

gests that adaptation at transduction does not affect gain of the spik-

ing machinery, consistent with our result that increasing odor back-

grounds decreased gain at transduction, but not spiking (Fig. 4.11a-d).

Thus, Weber-Fechner scaling in ORN gain control to stimulus mean

is insulated from activity of the spiking machinery.

Variance gain control exists in a wide range of neurons [6, 46, 122,

140, 179, 186]and in models of spiking neurons [60, 81, 184, 185], sug-

gesting that variance gain control could be an intrinsic property of

spiking neurons. To determine if the spiking machinery alone could

give rise to variance gain control, we stimulated ab3A ORNs that ex-

press Chrimson with fluctuating light stimuli of different variances

at fixed mean. ORN input-output curves were steeper when the vari-

ance of the light stimulation was smaller (Fig. 4.15e-f), similar to the

curves observed with odor stimulation (cf. Fig. 4.9e). We observed

that gain changed by a factor of ~1.5 when the standard deviation of

the light stimulus changed by a factor of ~3, consistent with variance

gain control occurring partly in the spiking machinery (Fig. 4.11e-h),

though Chrimson channels might exhibit their own adaptation to in-

puts.
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Figure 4.15: Modularity of gain control revealed by optogenetic stimulation. ab3A
ORNs in w; 22a-GAL4/+; UAS-Chrimson/+ flies can be acti-
vated by ethyl acetate odorant or by red light. (a-b) Fluctuat-
ing odor foreground and constant light background. (a) Trans-
duction gain to fluctuating odor . background light stimulation
intensity. (b) Overall ORN gain to fluctuating odor stimulus
vs. background light stimulation intensity. (b, inset) ORN fir-
ing rate vs. background light intensity. (c-d) Fluctuating light
foreground and constant odor background stimulus. (c) Input-
output curves to fluctuating light stimulus for increasing back-
ground odor (lighter colors indicate larger odor background).
(d) ORN gain is invariant with background odor concentration.
(d, inset) Odor-induced firing gain vs. background odor concen-
tration. (e-f) Fluctuating light stimulus with different variances.
(e) Input-output curves for high (red) and low (blue) variance
light stimuli. (f) ORN gain as a function of the standard devi-
ation of the light stimulus. (a-b) n = 75 trials from 13 ORNs.
(c-d) n = 64 trials from 5 ORNs. (e-f) n = 21 trials from 3 ORNs.
Lines link trials from a single ORN.
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4.2.6 Despite slowdown in transduction, ORN firing rate preserves timing

of odor encounters

When navigating odor plumes, the precise timing of the encounter

with the plume carries important information, which may be lost if

adaptation changes the lag between signal and response in a concentration-

dependent manner. The kinetics of ORN spiking in response to pulses

of odorant are invariant to the pulse intensity and to the background

intensity over a range of odorant concentrations [113]. Paradoxically,

adaptation to background odorants slows transduction current re-

sponses to odor pulses [26, 92, 125]. We hypothesized that these

seemingly contradictory results might be resolved if the ORN spik-

ing machinery speeds up to compensate for the intensity-dependent

slowdown in the LFP.

We characterized responses to odorant stimuli on increasing back-

grounds by measuring both ORN spike rates and LFP. We computed

cross correlation functions between the stimulus and the LFP for var-

ious stimulus backgrounds. For stimuli on low backgrounds, LFP

cross-correlation functions peaked earlier, while for stimuli on larger

backgrounds, LFP cross-correlation functions peaked later (Fig. 4.16a),

consistent with [26, 92, 125]. Surprisingly, cross-correlation functions

from the stimulus to the firing rate were similar between stimuli on

low and high backgrounds (Fig. 4.16b), consistent with [113]. This

selective change in the kinetics of the LFP, but not the firing rate,

occurred even though there was no change in the stimulus autocor-

relation function from low to high stimulus (Fig. 4.16c). We defined

the LFP and firing rate lags relative to the stimulus by the location

of the peak of the cross-correlation function, and found that while

LFP response lags increased with increasing odorant concentration

(p < 10�2, Spearman test), firing rate lags remained relatively invari-
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Figure 4.16: Adaptation to the mean slows down LFP, but not firing rate. (a-
d) Response of ab3A ORNs to Gaussian ethyl acetate stimuli
on increasing backgrounds. (a) Cross correlation functions be-
tween ethyl acetate stimulus and ab3 LFP responses for low
(purple) and high (yellow) background stimuli. (b) Cross corre-
lation functions between ethyl acetate stimulus and ab3A firing
rate responses for low (purple) and high (yellow) background
stimuli. (c) Stimulus autocorrelation functions for low (purple)
and high (yellow) background stimuli. (d-g) LFP and firing rate
lags w.r.t to the stimulus vs. the mean stimulus for various odor-
receptor combinations. LFP lags increase with mean stimulus,
while firing rate lags do not. (h) Firing lags of ab3A ORNs ex-
pressing Chrimson channels vs. applied light power. In (c-g), r
is the Spearman correlation coefficient, and p is the correspond-
ing p-value.

ant with odorant concentration (p > 0.1, Spearman test) (Fig. 4.16d-

g).

For firing rate lags to remain invariant with odorant concentration

despite a slowdown in transduction, the kinetics of the spiking ma-

chinery need to speed up with increasing input to the cell. To test if

this is the case, we stimulated ab3A ORNs expressing Chrimson with

Gaussian red light stimuli with increasing means, and measured lags

between the applied light stimulus and firing rate. Firing lags de-

creased with increasing light power concentration (p < 10�4, Spear-
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Figure 4.17: Variance gain control does not change response kinetics. (a) Stimu-
lus autocorrelation functions, computed during high variance
epochs (red) and during low variance epochs (blue). (b) Auto-
correlation time (defined as the time the autocorrelation func-
tion first drops to 1/e) vs. the standard deviation of the stim-
ulus, for each trial. (c) Cross correlation functions from stimu-
lus to LFP. The cross correlation functions are very similar be-
tween high (red) and low (blue) variance epochs. (d) LFP lag
w.r.t the stimulus, estimated from the location of the peak cross-
correlation, vs. standard deviation of the stimulus. No signif-
icant change in lag was observed (p = 0.4, t-test). (e) Cross
correlation functions from stimulus to firing rate. The cross cor-
relation functions are very similar between high (red) and low
(blue) variance epochs. (f) Firing rate lag w.r.t the stimulus, es-
timated from the location of the peak cross-correlation, vs. stan-
dard deviation of the stimulus. No significant change in lag was
observed (p = 0.133, t-test).

man test), suggesting that the ORN spiking machinery can speed up

with increasing input currents (Fig. 4.16h).

If adaptation to the mean slows down transduction, which is cor-

rected for at spiking, does adaptation to the stimulus variance also

lead to similar compensatory kinetics? We found that a three-fold

change in the stimulus variance, despite leading to changes in LFP

and firing gains (Fig. 4.9-4.11), did not significantly change kinetics

either at LFP or firing rate (Fig. 4.17), consistent with our earlier re-
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sults suggesting that mean and variance gain control are etiologically

distinct.

4.2.7 An adaptive two-state receptor-complex model reproduces Weber-Fechner

scaling, slow down of LFP kinetics, and responses to intermittent and

Gaussian stimuli.

How do adaptive mechanisms at transduction preserve both the Weber-

Fechner Law and lead to response slowdowns? In the following we

show that a minimal two-state model of the olfactory receptor-olfactory

co-receptor (Or-Orco) complex with an adaptation architecture simi-

lar to that of the bacterial chemotaxis system [2, 7, 53, 157]can repro-

duce the LFP responses to naturalistic and Gaussian stimuli, as well

as Weber-Fechner Law and its accompanying response slow down. In

our model, Or-Orco complexes can be active or inactive (C and C* in

Fig. 4.19a) and the active complex binds odorant S with higher affin-

ity than the inactive complex. We assume that ligand (un)binding is

fast compared to (in)activation rates (w+and w– in Fig. 4.19a) . The

fraction of active complexes therefore obeys the equation

da/dt = (1 � a)w+(S, #)� aw-(S, #) (4.1)

where the rates of activation w+(S, #) and inactivation w�(S, #) are

nonlinear functions of the odor concentration S and of the free energy

difference # between the unbound active and inactive states (Eqs. 3-

4 in Methods). The LFP is modeled as a linear filter acting on the

activity (Fig. 4.19a, eq. 5 in Methods). At steady state, Eq. 4.1 reduces

to

ā(S, #) = 1/(1 + w-(S, #)/w+(S, #)) (4.2)
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where the bar indicates steady state. ā(S, #) is a monotonically increas-

ing function of the odor concentration S. Increasing the free energy

difference shifts this function towards higher values of S, therefore

reducing the sensitivity of the system. We model adaptation by as-

suming that activity of the Or-Orco complex controls the activity of

factors that act on the complex to modify the free energy difference :

d#

dt
= b(a � a0) (4.3)

where b is the rate of adaptation. Importantly, the rate of change of

only depends on the activity a but not on the free energy difference

#. The architecture of this feedback is similar to that of the bacterial

chemotaxis system and ensures that for increasing values of S, the

changes in compensate for changes in free energy due to ligand bind-

ing [7]. Thus, adaptation eventually returns a to the adapted value

providing Weber-Fechner scaling [157] (as in Fig. 4.6). We assume

that the free energy of the complex can only be changed within a fi-

nite range, and that the lower bound #L is reached for small values

of S. Thus, in the absence of ligand, the steady state activity can be

smaller than a0. For non-zero values of S, the steady state activity first

increases with background signal intensity [113], before it becomes in-

dependent of background intensity once it reaches (Fig. 4.18), as seen

in Fig. 4.6c.

An important intrinsic property of this model is that adaptation

to increasing background of odorant decreases the rates of activation

and inactivation and of the Or-Orco complex decrease, providing a

self-consistent explanation for the slowdown of the response kinetics

of the LFP upon adaptation. It is interesting to note that this kinetic

property emerges because (1) the switching rates are decreasing func-

tions of the free energy difference and (2) the requirement of Weber-
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Figure 4.18: Steady state activity as a function of the stimulus background. At
high stimulus background, the steady state activity of the re-
ceptor complex is (here, a0 = 0.5). The model is unable to adapt
perfectly to lower stimulus backgrounds, since # is bounded by
#L. This causes the steady state activity to decrease.

Fechner scaling, which causes the adapted value of to scale with the

logarithm of the mean signal intensity (see Methods).

The resulting model (Eqs. 4.1-4.3) contains six parameters plus an-

other 3 for converting the signal from activity to LFP. We fit this

model to LFP responses to the Gaussian and naturalistic stimuli. The

model decreased gain with the mean stimulus background, consis-

tent with Weber-Fechner Law (Fig. 4.19b), and predicted the observed

decrease in the LFP gains well (Fig. 4.19c, r2 = 0.84). In addition, re-

sponse lags of this model with respect to the stimulus increased with

the mean stimulus (Fig. 4.19d), similar to the slowdown observed in

the LFP responses (cf. Fig. 4.16). Finally, this model can also repro-

duce LFP responses to naturalistic, intermittent signals, approximat-

ing well the time trace (Fig. 4.19e, g) and the dependence on previous

whiffs (Fig. 4.19f, compare to Fig. 4.4).

Since the spiking machinery compensates for the slowdown in LFP

responses to preserve the timing of odorant encounters, we wondered
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Figure 4.19: A modified two state receptor model reproduces Weber’s Law and
adaptive slowdown in LFP responses. (a) Or-Orco complexes (C)
can be bound or unbound and active or inactive. We assume
(un)binding rates are much faster than (in)activation rates. Ac-
tivity of the complex feeds back onto the free energy differ-
ence between active and inactive conformations, which also
decreases the activation and inactivation rates of the complex
(Eqs. 1-4). A mono-lobed filter converts receptor activity into
LFP signals (Eq. 5). We fit the model to Gaussian (Fig. 3,5) and
naturalistic data (Fig. 1-2). In these fits, and . (c) Model gain
vs. mean stimulus. Red line is the Weber-Fechner prediction
(DR/DS ⇠ 1/S). (c) LFP gain vs. model gain. (e) Model re-
sponse lag with respect to stimulus vs. mean stimulus. (f) LFP
and model responses to naturalistic stimulus. (g) The model
reproduces LFP responses to similar-sized whiffs that vary in-
versely with the size of preceding whiffs. (cf. Fig 2). (h) LFP
responses vs. model responses for every whiff in the naturalis-
tic stimulus.



4.3 discussion 96

if a simplification of this model that ignores the slowdown of the

LFP kinetics upon adaptation could be used to predict firing rate:

RF = N(KF ⌦ ā(S, #)) where N is a static nonlinearity, KF a partially

derivative taking linear filter (⌦ indicates convolution), and ā(S, #) is

the steady state solution (eq. 4.2) with # obeying eq. 4.3. This sim-

plification reduces this model to a type of adaptive nonlinear linear-

nonlinear (NLN) model, which preserves Weber-Fechner Law and

reproduces the firing rates of ORN in response to both naturalistic

and Gaussian Stimuli (Fig. 4.20). Thus it could be a useful tool in

modeling ORN responses received by PNs, or in constructing com-

putational models of the antennal lobe [3, 8, 11, 27, 33, 82, 94, 99,

147, 148, 164]. The model reproduced the change in the input-output

curves on increasing the mean stimulus (Fig. 4.20a, cf. Fig. 4.6e) and

decreased gain inversely with the mean stimulus, consistent with the

Weber-Fechner Law (Fig. 4.20b). The model reproduced the observed

decrease in the ORN gains (Fig. 4.20c, ), and responses to naturalistic

stimuli (Fig. 4.20d-f).

4.3 discussion

The goal of this work was to study how ORNs encode naturalistic

odor signals, characterizing how gain control in ORNs is modulated

dynamically in response to stimuli. By using precisely controlled, re-

peatable odorant stimuli, and linear modeling, we found that:

a. ORN gain varies dynamically during responses to naturalistic

stimuli, suppressing responses to whiffs following earlier whiffs

(Figs. 4.1,4.4).

b. Gain varies inversely with the mean stimulus (Weber-Fechner

Law) and can also decrease with increasing stimulus variance

(Figs. 4.6, 4.9).
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Figure 4.20: Front-end adaptation followed by a LN model reproduces firing rate
responses to Gaussian and naturalistic stimuli. (a-f) Model from
stimulus to firing rate (see Methods) fit to Gaussian and nat-
uralistic stimuli. (a) Model responses vs. projected stimulus
with increasing mean stimulus (cf. Fig. 4.6). (b) Model gain
vs. mean stimulus. Red line is the Weber-Fechner prediction
(DR/DS ⇠ 1/S). (c) Firing rate gain vs. model gain. (d) Firing
rate and model responses to naturalistic stimulus. (e) The model
reproduces variation in the firing rate responses to similar-sized
whiffs (cf. Fig 4.4). (f) Firing rate responses vs. model responses
for every whiff in the naturalistic stimulus.
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c. Variance gain control occurs at both transduction and spiking,

while mean gain control occurs only at transduction (Fig. 4.11,

4.15).

d. While gain control slows stimulus-to-transduction kinetics, this

is compensated for by a corresponding speed up of transduction-

to-spiking kinetics, therefore maintaining the stimulus-to-firing

rate kinetics relatively unaffected (Fig. 4.16).

e. Finally, we proposed a simple model based on the two-state

receptor model that reproduce several key features of LFP and

firing rate response and gain control (Figs. 4.19,4.20).

4.3.1 The Weber-Fechner Law in olfaction

The Weber-Fechner Law has been observed in several sensory sys-

tems, including vision [23, 105, 126], audition [141], and somatosen-

sation[79]. However, a clear identification of the law in the firing rate

of ORNs has remained elusive, due to difficulties in controlling and

measuring odor stimuli in gas phase simultaneously with ORN firing

rate [25, 113]. Here we directly measured ORN firing rate and stim-

ulus intensity and found that the ORN firing rate exhibited Weber-

Fechner gain scaling relative to the mean stimulus intensity for five

different odor-receptor combinations (Fig. 4.6, 4.7). These data sug-

gest that olfaction shares the Weber-Fechner Law with other sensory

systems.

What is the purpose of front-end Weber-Fechner gain scaling? ORNs

are capable of spiking up to ~300Hz [73]; however, we found that with

their compressive gain control, ORNs maintained firing rates between

0 - 50 Hz to fluctuating odor stimuli, even with a ten-fold increase in

the mean stimulus. The ORNs’ postsynaptic partners, the projection

neurons (PNs) [128], are most sensitive to ORN firing rates of below
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~50 Hz [85]. Thus, gain scaling at ORNs could act to maintain ORN

firing rates in the range that PNs are most sensitive to for a wide

range of concentrations.

4.3.2 Variance gain control in olfaction

In principle, gain control in sensory systems could be affected by

several moments of the stimulus distribution, measured over many

timescales. In the visual system, gain control depends on stimulus

mean and variance, but not strongly on higher moments like the skew

and the kurtosis [14, 173]. Cell-intrinsic variance gain control exists in

a variety of systems, including the retina [9, 186], lateral geniculate

nucleus [107], auditory neurons [122], and cortex [46, 145]. Photore-

ceptors do not exhibit variance gain control, and variance adaptation

arises only in the subsequent processing in bipolar cells and ganglion

cells [6, 97, 140].

What could be the functional role of variance gain control in olfac-

tion? One possibility is to ensure that ORN responses occupy their

full dynamic range [104]. While we quantified our stimulus in terms

of the first and second moments of the stimulus statistics in this study,

these moments may not map simply onto the salient features that

are most relevant to the fly’s encoding scheme. Variance gain control

could therefore be a consequence of an adaptive representation that is

important to the coding properties of the ORN. Nonetheless, because

i) variance gain control is distributed between transduction and spik-

ing machinery (Fig. 4.11), ii) mean gain control is linked to calcium

influx and variance gain control is not (Figs. 4.13, 4.14) [26], and iii)

mean gain control slows down transduction (Fig. 4.16) [26, 125] but

variance gain control does not (Fig. 4.17), adaptation to the stimu-
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lus variance is mechanistically distinct from adaptation to stimulus

mean.

4.3.3 Models and mechanisms of ORN response and gain control

The results presented here, and the models that reproduce them, fo-

cus on the phenomenology of gain control in ORNs. Do these phe-

nomenological results constrain possible mechanisms that could im-

plement gain control in ORNs? Weber-Fechner gain scaling (Fig. 4.6)

can be reproduced by models using feed-forward loops [36, 64], in-

tegral feedback [84] or both [152]. A detailed biophysical model of

odor-receptor binding and channel opening has been proposed to ac-

count for transduction responses to odors [125]. While this model can

change gain via a negative feedback mechanism, it does not repro-

duce the Weber-Fechner law, or the slowdown of LFP kinetics upon

adaptation. Here we showed that these features emerge if we assume

that: (i) the activity a of the Or-Orco complex feeds back onto the

free energy difference between the active and inactive state of the

unbound Or-Orco complex, which in turns affects both the rates of

activation and inactivation of the complex; (ii) the rate at which is

modified only depends on the activity a.

Such an architecture reproduces the Weber-Fechner law and is sim-

ilar to that of the bacterial chemotaxis system [7]. There, adaptation

is mediated by two antagonistic factors, one that acts on inactive com-

plexes only, and another one that acts on active complexes [7]. While

the molecular architecture of the signaling pathway in ORNs has not

been fully characterized, several studies have implicated calcium as

a slow diffusible factor that could mediate adaptation to the mean

stimulus [45, 166]. Decreasing extracellular calcium levels, or inter-

nal free calcium breaks Weber-Fechner gain scaling at transduction
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[26] and increasing stimulus amplitude leads to increasing levels of

intracellular calcium (Fig. 4.13). Other mechanisms have also been im-

plicated in adaptation of ORNs, like auto-regulation of Orco via cAMP

signaling [63]. While slower adaptive processes also exist, our data on

responses to naturalistic stimuli (Fig. 4.1,4.4), and data from paired-

pulse experiments [26], suggest that these potential mechanisms can

also act on fast timescales of several hundred milliseconds.

Many models that decrease gain with increasing mean stimulus

also speed up response kinetics [36, 44, 125, 152, 153] describing

well the phenomenology of other sensory systems where gain and

response speed trade off [39, 50, 122, 132]. However, in olfactory sys-

tems, transduction kinetics slow down with increasing stimulus back-

ground, both in insect ORNs (Fig. 4.16, [26, 125]) and in vertebrate

ORNs [138]. It is not trivial to devise systems in which kinetics slow

down with increasing stimulus background. To exhibit this property,

a system must increase its effective timescale of response with stimu-

lus intensity, for example, by decreasing all reaction rates uniformly.

Interestingly, our model also exhibits a slowdown in the LFP kinetics

upon adaptation. This feature emerges intrinsically from the model

architecture because: (i) the feedback of the activity onto the free en-

ergy difference affects both the activation and deactivation rates of

the complex (w+ and w�); and (ii) the Weber-Fechner gain control

causes # to scale logarithmically with the stimulus, which in turn

causes w+and w�to decrease.

Earlier work modeled the transformation from LFP to firing rates

using a derivative-taking kernel [125]. Here, we show that the tem-

poral structure of these kernels depends on the adaptation state of

the ORN, and must take derivatives on shorter timescales at higher

stimuli to compensate for slowing transduction kinetics. While the

mechanism of this speed up is not known, the neuron’s ability to
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spike with shorter latencies could depend on the adapted state of

its receptors, the level of intracellular calcium, or the distance of its

membrane potential from firing thresholds.

What cellular mechanisms could give rise to gain control that is

variance dependent? (Fig. 4.9). We found that both the transduction

machinery and the spiking machinery of the ORNs exhibit variance-

sensitive gain-control (Fig. 4.11,4.15). Variance gain control after trans-

duction could arise from the spike generating machinery. Hodgkin

Huxley (HH) model neurons exhibit variance gain control [80, 109,

185]. Simpler neuron models, like the FitzHugh-Nagamo model [81],

and the linear integrate-and-fire (LIF) model [185] also exhibit variance-

dependent gain control. In the visual system, non-spiking bipolar

neurons show variance gain control [6, 140] so mechanisms for vari-

ance gain control in the absence of spike generation might be similar

between these systems.

4.3.4 Dynamic gain control could aid in naturalistic odor detection

Previous studies of olfactory adaptation employed conditioning and

probe stimuli [25, 113, 125], which typically adapt neurons over many

seconds or minutes before testing response properties with a short

probe. Other studies using paired pulse protocols [26] found that re-

sponses to brief pulses of odorant reduced gain on timescales as brief

as 500 ms, which is close to the timescale of the neural response to

odors [96, 113, 125]. Similar fast timescales of gain control have been

observed in the visual system [24, 39]. We found that this fast gain

control was employed by ORNs to dynamically control gain during

responses to naturalistic odorant stimuli (Fig. 4.4).

Fast gain control allows ORNs to respond to the rapidly chang-

ing statistics of natural odor plumes, letting gain decrease quickly in
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response to a large whiff and then ramp up again to a subsequent

small whiff. Dynamic inhibition in the antennal lobe [124, 135] would

permit PNs to remain sensitive to these rapid changes in ORN firing

rate, ensuring propagation of information about odor encounters to

the brain.

4.3.5 Invariant firing rate kinetics could improve odor-guided flight behav-

ior

Insects follow odor plumes to their source to find food or reproduc-

tive mates [119]. For flies, this task is challenging since they fly fast

(~30 cm/s) [172] and odor filaments are narrow [119]. Even for rel-

ative broad and static odor plumes, flies are within odor plumes so

briefly that they experience plume contact and plume loss in quick

succession (10-250 ms) [16]. Olfactory search behavior in this set-

ting consists of rapid flight surges on encountering odor plumes,

and stereotyped crosswind casts on losing odor plumes [16]. Navi-

gation based on odor intensities alone may not be possible, as odor

intensities are not informative about the direction to the odor source

at length scales longer than 10 cm [119]. Indeed, there is a growing

body of evidence underlining the importance of timing in olfaction

[113, 136, 158, 161, 162].

In this context, it may be important for the fly to know precisely

when it encountered an odor filament. This task is made difficult by

the fact that olfactory adaptation to large stimuli slows transduction

[26, 125]. Adaptation could change the kinetics of the transduction

from whiff to whiff, so that downstream neurons would have to know

the adaptation state of the ORN to precisely determine encounter

timing.
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Our results reveal that flies solve this problem by using transduc-

tion and firing machinery that possess complementary kinetic prop-

erties. This maintains ORN firing rate lags at a constant value in the

face of slowing transduction. Our results suggest that ORNs can en-

code the precise timing of odor encounters, for a wide range of odor

concentrations. Such an encoding scheme could aid insects in navi-

gating odor plumes to their source.

When a system responds identically, in amplitude and in kinet-

ics, to stimuli that are different only in scale, the system is said to

show Fold Change Detection (FCD) [65]. FCD thus implies the Weber-

Fechner Law. In addition, the invariance of response kinetics with

stimulus intensity means that FCD implies an invariant response lag

with stimulus intensity. While ORNs do not adapt perfectly [113],

as required for FCD, their invariance of response lag with stimulus

intensity [113], (Fig. 4.16) is intriguingly similar to the response phe-

nomenology of FCD networks [64, 65].

Interestingly, olfactory adaptation is linked to flight in insects. Olfactory

Receptors (ORs) adapt and have co-evolved with flight [52, 63, 88]

and occur only in flying insects [115]. In contrast, the more ancient

ionotropic receptors [115] found in all insects, do not appear to adapt

to prolonged odor stimuli [26]. While ORs play an important role in

larval olfactory navigation [77, 114, 152, 159], the statistics of odor sig-

nals close to surfaces, and in the air, where flying insects encounter

them, may be very different [119]. Receptors capable of fast adapta-

tion may allow flying insects to detect brief whiffs of airborne odors.
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4.4 methods

4.4.1 Electrophysiology

single sensillum recordings . Single sensillum recordings from

Drosophila antennae were performed as described previously [19,

113]. The recording electrode was inserted into a sensillum on the

antenna of an immobilized Drosophila melanogaster and a reference

electrode was placed in the eye. Electrical signals were amplified us-

ing an Iso-DAM amplifier (World Precision Instruments). The ab3

sensillum was identified by 1) its size and location on the antenna 2)

test pulses of 2-heptanone, to which the B neuron is very sensitive, 3)

spike shapes (A spikes are larger than B spikes) and 4) spontaneous

firing (ab3B fires at a higher rate than ab3A). Other sensilla were

identified using test odors to which either the A or B neuron strongly

responded to.

spike sorting . All sensilla recorded from in this study contained

two neurons [19, 163]. Generally, spikes from the “A” neuron are

larger than spikes from the “B” neuron. However, spike amplitude

and spike shape changed in our experiments with strong odor or

light drive, due to a phenomenon called “pinching” [130], and due

to small movements of the recording electrode relative to the sen-

sillum. To identify spikes from the A neuron under these challeng-

ing conditions, we developed a spike-sorting software package writ-

ten in MATLAB (Mathworks, Inc.), available at https://github.com/

emonetlab/spikesort. This package uses the full spike shape, with

various dimensionality reduction and clustering methods to reliably

identify spikes from noise, and to sort identified spikes. This spike-

sorting package performed with 99.5% accuracy compared to manu-

ally sorted data on a test dataset.

https://github.com/emonetlab/spikesort
https://github.com/emonetlab/spikesort
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local field potentials . The local field potential was recorded

by lowering the gain of the amplifier and switching to DC mode,

where we recorded the sensillar potential without any low frequency

cutoff. Spike detection and sorting was reliable in either mode. Since

we were only interested in the deflections of LFP in response to a fluc-

tuating odor stimulus, we band-passed the raw voltage in software to

remove spikes and slow fluctuations.

4.4.2 Fly stocks and genetic strategies

Flies were reared at 25°C on conventional fly medium [76]. All exper-

iments were performed on adult female flies 3-5 days post-eclosion.

Unless otherwise mentioned, recordings were from ab3A neurons in

Canton-S flies. In Fig. 4.15 and Fig. 4.16h, we recorded from ab3A

ORNs in w; Or22a-GAL4/+; UAS-Chrimson/+ flies. In these flies,

only ab3A ORNs were sensitive to light, while ab3B neurons and

nearby ab2 sensilla were not. In Figs. 4.13-4.14, we recorded from w;

Or22a-GAL4/+; UAS-GCaMP6f/+ flies.

4.4.3 Stimulus measurement

We used a Photo Ionization Detector (PID) (200B, Aurora Scientific) to

measure the odor stimulus during every experiment. Stimulus mea-

surements occurred simultaneously with all electrophysiology, and

the tip of the PID probe was < 1 cm of the odor delivery tube and

the fly. The PID was calibrated by depleting known volumes of pure

odorants, and the response of the PID was found to be approximately

linear with odorant flux (Fig. 2.5). However, due to gradual changes

in the sensitivity of the PID detector, odor intensity measurements

are not comparable across experiments. For more details on how the



4.4 methods 107

stimulus was measured, and for details on PID calibration, see Chap-

ter 2.

We measured the intensity of red light that we used to activate

Chrimson at the location of the fly using a PM160 light power me-

ter (Thorlabs). We used this to construct a function mapping control

signals to our LED to light power in µW, and transformed control

signals into light power using this function.

4.4.4 Odor stimulus generation

Details on the odorant stimulus delivery are found in Chapter 2.

4.4.4.1 General principle.

Odorants in gas phase were delivered to the antenna by blowing air

over pure monomolecular odorants in liquid phase. The flow rate of

air over the liquid odorant determined the gas phase concentration.

4.4.4.2 Controlling air flows.

Mass Flow Controllers (MFCs) (Aalborg instruments & Controls, Inc.

and Alicat Scientific) were used to regulate airflows. Dynamic re-

sponse parameters of Alicat MFCs were chosen either for high speed,

and driven with switching times of up to 20 ms (at the cost of repro-

ducibility) or were chosen for high precision, and driven with switch-

ing times of 100 ms (at the cost of very fast stimulus control). An

odorized airstream (0-200 mL/min) was fed into a main airstream

(2 L/min) that was delivered through a glass tube positioned within

10mm of the fly’s antenna. The secondary airstream passed through

a scintillation vial with a machined plastic screw-top lid containing

pure odorant. Using pure odorant and gas phase dilution permitted

excellent reproducibility of the odor stimulus. All tubing was made



4.4 methods 108

of chemical-resistant PTFE tubing (McMaster Carr, stock #5239K24).

By varying the control signals to the MFC bank, steps, pulses, and

frozen noise waveforms with arbitrary distributions could be reliably

delivered. We wrote a general-purpose acquisition and control sys-

tem called kontroller (available at https://github.com/emonetlab/

kontroller) in MATLAB (Mathworks, Inc.) to control MFCs, valves

and LEDs and to collect data from electrophysiology and the stimulus

measurement.

naturalistic stimulus (fig . 4 .1) To generate naturalistic odor

stimuli, we randomly varied flow rates over 0-200 mL/min, and used

a small solenoid valve (Lee Co.) to deliver 50 ms whiffs of odorant.

We used the same frozen random sequence in subsequent trials.

stimulus with changing mean (fig . 4 .6)To generate approx-

imately Gaussian-distributed stimuli that differed in their mean, but

with similar variances, we started with the ansatz that air flow rates

were proportional to measured gas-phase stimulus. We then defined

target Gaussian distributions that differed only in their mean, and a

parametric distribution from which we drew control signals to the

MFC. Using kontroller to automate the process, we performed a di-

rect search on hardware to find the best distribution of control sig-

nals that was closest to the desired Gaussian distribution. Further

rounds of off-line numerical optimization using nonparametric mod-

els of the delivery system ensured that the resultant stimulus distri-

butions were as close to Gaussians and with variances as similar to

one another as possible.

stimulus with changing variance (fig . 4 .9) We used two

MFCs driven by control signals with different variances to generate

two Gaussian-distributed stimuli with differing variances. Solenoid

valves (Lee Co.) were used to switch from one airstream to the other

every 5 seconds. Control signals were iteratively optimized using sim-

https://github.com/emonetlab/kontroller
https://github.com/emonetlab/kontroller
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ulations and kontroller till the mean stimulus intensity from the two

odor lines was indistinguishable.

4.4.5 Numerical Methods

4.4.5.1 Statistics of Naturalistic Odor.

Since the intensity distribution in our naturalistic odor stimulus was

very broad, we defined whiffs of odor as short excursions of the odor-

ant signal above the noise floor. Blanks were defined as the periods

of time between whiffs. Whiff intensities were broadly distributed,

and were fit with a functional form proposed in [30]. Both whiff and

blank duration distributions were fit with a power law with expo-

nent -3/2, following theoretical calculations for a jet flow [30] (Fig.

4.2). Mean and variance of naturalistic odor stimuli were computed

in non-overlapping windows of length (Fig. 4.2e, t = 400 ms). Win-

dow lengths were varied from t = 10 ms to t =10 s (Fig. 4.2f).

4.4.5.2 Estimating deviations in response to naturalistic stimulus.

For every whiff shown in Fig. 4.1e-f, we computed the median re-

sponse for all whiffs in a bin centered around that whiff’s stimu-

lus amplitude, that encompassed other whiffs if their amplitude was

within 10%. The fractional deviation in response to a given whiff i

is defined as Di = (Ri � R̃)/R̃, and is a dimensionless number that

is negative when responses are smaller than the median. To deter-

mine if the time to the previous whiff and the amplitude of the previ-

ous whiff of negative deviations and positive deviations were differ-

ent, we used a 2-sample two-dimensional Kolmogorov-Smirnoff test,

based on the method proposed by Peacock [133].
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4.4.5.3 Filter extraction.

Details of filter extraction are found in §3.1.

Linear filters extracted from naturalistic stimuli (Fig. 4.1, 4.3) are

not unbiased estimates of the true filter, since the stimulus is not

Gaussian. Similarly, if a front-end nonlinearity precedes a linear fil-

tering step in a system, this fitting procedure will not yield an unbi-

ased estimate of the true filter. Nonetheless, linear filters computed

by least squares fitting are the filters that best predict R given S, in

the least-squares sense.

orn input output curves . (solid lines in Fig. 4.6e, 4.9e etc.)

We defined ORN input-output curves to be the output nonlinearity

of a LN model, which were estimated by plotting ORN response vs.

the projected stimulus, and then computing a piecewise linear func-

tion using 50 bins along the horizontal axis. Computing piecewise lin-

ear functions allowed us to visualize the output nonlinearity without

making explicit assumptions of the functional form of the nonlinear-

ity. Dashed lines in Fig. 4.9e are the cumulative distributions of the

stimulus, computed over all the data.

estimation of gain. In general, for any system with a single

stimulus and response, we define the gain of the system by measur-

ing the slope of the nonlinearity in the best fit LN model, normalizing

the filters to preserve the scale of the stimulus as in [6]. With Gaussian

stimuli that only gently perturb the system, the nonlinearity is sim-

ply a straight line, and the gain is computed by the average slope of

a linear fit to the output nonlinearity (Fig. 4.6). When output nonlin-

earities are strong, we estimated gain by the slope at the midpoint of

the nonlinearity (Figs. 4.9-4.11). We measured three different gains: 1)

transduction gains, from the stimulus to the LFP, 2) firing gains, from



4.4 methods 111

the LFP to the firing rate, and 3) overall ORN gains, from the stim-

ulus to the firing rate. Transduction gain had units of (mV/V) since

deflections in LFP are measured in mV and the stimulus is measured

in V. Similarly, firing gain had units of Hz/mV. Overall ORN gain

had units of Hz/V when stimulating ORNs with fluctuating odor,

and had units of Hz/µW when stimulating with light. In experiments

where we changed the variance (Fig. 4.9), low-variance epochs tended

to have a mean stimulus ~8% higher than high-variance epochs (Fig.

4.10), despite our best efforts to keep the stimulus mean the same.

To estimate gain changes solely due to the change in stimulus vari-

ance, we divided the projected stimulus by the mean stimulus in each

epoch in each trial (Fig. 4.9e). Differences in gain between high- and

low-variance epochs remain significant even without this correction

(Fig. 4.10b-c). A single filter was used to project stimuli in both low-

and high-variance epochs; changes in gain from low- to high-variance

stimuli thus appear solely in the nonlinearity (Fig. 4.10d).

measuring lags . In all our data, we measured the stimulus to-

gether with the response of ORNs. This allowed us to estimate trans-

duction and firing lags with respect to the stimulus. In general, we es-

timated response lags by computing cross-correlation functions from

the stimulus to the response. Lag was defined to be the location of

the peak of the cross-correlation function. (Fig. 4.16a-b).

estimation of variance gain control timescale . To es-

timate the timescale of variance gain control (Fig. 4.9), we computed

input-output curves from the projected stimulus to the firing rate in

50 ms bins, pooling all trials together. This allowed us to estimate

gain in 50 ms bins, together with the stimulus contrast (standard

deviation/mean). We plotted time series of instantaneous gain and
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stimulus contrast (Fig. 4.9h), and observed that while the stimulus

contrast changed rapidly after the switch from high to low variance

(at t = 5 s), the instantaneous gain changed more slowly, but still

changed in ⇠ 130 ms, suggesting that timescale of variance gain con-

trol is relatively rapid.

statistical tests . To determine if ab3A transduction-to-firing

gain varied with the mean stimulus (Fig. 4.11d), we used a Spearman

rank correlation test. To determine if gains varied significantly from

low to high variance epochs (Fig. 4.9, 4.11), we first reshaped the raw

data into trials 10 s long. Each trial consisted of a high variance epoch

followed by a low variance epoch. Each trial was fit with three linear

models, and yielded three pairs of gains, for transduction gain, firing

gain, and total ORN gain. We discarded all trials where any linear

model fit was poorly correlated with data, retaining only trials where

all fits had high correlations with data (r2 > 0.8, see Fig. 4.10f-g).

We used the Wilcoxon signed rank test on these tuples to determine

if the difference in gains in the low and high variance epochs was

statistically significant.

4.4.6 Modeling

4.4.6.1 Stimulus binding and the activity of the Or-Orco complexes.

We assume that Or and Orco form a complex that can exist in two

conformations that can bind ligand. The concentration of unbound

active complexes is C⇤ and that of unbound inactive one is C. The

corresponding concentrations for the bound complexes are C⇤S and

CS (Fig. 4.19a). The fraction of active Or-Orco complexes is therefore:

a =
C⇤ + C⇤S

C + CS + C⇤ + C⇤S
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(Un)binding of odorant is taken to be much faster than the (in)activation.

Thus, the probability to be bound in the active and inactive cases are

Pb =
S

S + Koff

P⇤
b =

S
S + Kon

Here Kon < Koff are the dissociation constants for each state. Let

the free energy difference in units of kBT between the active and inac-

tive states be # and #b when unbound and when bound, respectively.

For simplicity, we assume detailed balance (this can easily be relaxed

[160]), which constrains the free energy difference between C⇤S and

CS to be #b = # + log(Kon/Koff). The activation kinetics can then be

described by

dC⇤

dt
= wu

+C � wu
�C⇤

where the rates are

wu
± =

a

1 + e±#

wb
± =

a

1 + e±#b

We constrained the energy barrier between the active and inac-

tive conformations by making the simplifying assumption that wu
+ +

wu
� = a = wb

� + wb
�, where a is an intrinsic switching rate (see e.g.

[160]). From these considerations we can then derive Eq. 4.1 from the

main text, which describes the dynamics of the activity:

da
dt

= (1 � a)w+(S, #)� aw�(S, #)

with the rates
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w+(S, #) = Pbwb
++(1� Pb)wu

+ =
S

S + Koff

a

1 + e#+log( Kon
Koff

)
+

Koff

S + Koff

a

1 + e#

w�(S, #) = P⇤
b wb

�+(1� P⇤
b )w

u
� =

S
S + Kon

a

1 + e�#�log( Kon
Koff

)
+

Kon

S + Kon

a

1 + e�#

Given a steady state signal S, the activity relaxes towards

ā(S, #) =
1

1 + w�
w+

=
1

1 + e# 1+S/Koff
1+S/Kon

Where the overbar indicates that equation 4.1 is solved at steady

state. We model adaptation assuming that the activity feeds back onto

the free energy difference with rates that depend only on the activity

(the effective switching rate is constant):

d#/dt = b(a � a0)

where b is the rate of adaptation. Note that the free energy is

bounded both from below and from above. In practice, we only need

the lower bound #L < #. At steady state (for values of S high enough

that #L < #) we have ā = a0which implies that

#̄(S) = log(
1 � a0

a0

1 + S/Kon

1 + S/Koff
)

Thus, at steady state, adaptation causes the free energy difference

of the complex to increase with the logarithm of the background sig-

nal intensity.

4.4.6.2 Kinetic slowdown upon adaptation.

Substituting #̄(S) into the definitions of the (in)activation rates, we get
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w̄+(S) =
S

S + Koff

a

1 + Kon
Koff

1�a0
a0

1+S/Kon
1+S/Koff

+
Kon

S + Koff

a

1 + 1�a0
a0

1+S/Kon
1+S/Koff

and

w̄�(S) = w̄+(S)
1 � a0

a0

When Kon < Koff, the rates and are decreasing functions of S in the

range

0  S 

s
1 � a0

a0
KonKoff

In our case this bound is large (~40 V) and in our experiments the

rates are decreasing functions of S over the entire range.

4.4.6.3 Receptor activity to LFP.

The output of the model described above is a time series of the frac-

tion of receptors that are active, . Receptor activation can lead to the

opening of other channels, which results in a transduction current

that we measure as changes in the LFP. To generate LFP responses

from this, we use

RLFP = C0(KLFP⌦a(t))

where ⌦ represents a convolution and KLFP is a linear time-invariant

mono-lobed filter that is given by

KLFP =
tme�t/t

m!tm+1 q(t)
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4.4.6.4 Receptor activation to firing rates.

Since firing rates cannot be negative, and since the LFP to spiking

transformation has been shown the partly differentiating [125], we

generated firing rate responses from the receptor activity using

RF = N(KF ⌦ a(t))

where N is an output nonlinearity which is a simple threshold lin-

ear function (N(x < 0) = 0; N(x > 0) = Cx). ⌦ represents a convo-

lution and KF is a linear time-invariant filter that is given by the sum

of two other kernels:

KF = K1 + aK2

where each kernel is parameterized by a Gamma function:

Ki =
tme�t/ti

m!tm+1
i

q(t) i 2 {1, 2}
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T H E T E T H E R E D F LY A S S AY

5.1 goals

Olfactory stimuli can be decomposed into a few basic features, like

the chemical identity of the odorants in the odor, their concentration,

and the kinetics of the stimulus. Olfactory Receptor Neurons (ORNs)

appear to be able to capture all these features. The chemical identity

of the odorant is captured by which olfactory neurons respond, since

different neurons have different receptors [71, 74]. The concentration

of the odorants in the stimulus is captured in part by the amplitude

of neuronal response [19, 20], and also by the identity of the neurons

that respond, since different receptors have different sensitivities to

the same odorant [71, 74]. Finally, the temporal structure of the odor-

ant stimulus is encoded in the response kinetics of neuron response

[113]. Insects on the wing can encounter odorant stimuli with varying

concentrations and durations [16, 30], and it is not clear if flies use all

these features of the stimulus equally to make navigational decisions.

The Tethered Fly Assay (TFA), originally developed to study insect

flight [67] was later adapted and modified to study vision, mechanosen-

sation, and the visual control of flight [10, 22, 57, 106, 156]. Recently,

the TFA has also been used to study olfaction, either in the fixed teth-

ered configuration [13] or in rotatable tethered configuration, where

flies can actively reorient into or away from an odorized airstream

[58, 59, 101]. Since the fly is fixed in place in this assay, this makes

it possible to deliver and measure olfactory stimuli and permits mea-

117
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suring how these olfactory stimuli modulate olfactory flight behavior.

In this assay, the behavior of the fly is quantified by changes in the

Wing Beat Amplitude (WBA) and by changes in the Wing Beat Fre-

quency (WBF), both of which are measured in real time by the “Wing

Beat Analyzer” that is part of the assay.

In the next section, I detail my attempts to use this assay to deter-

mine how flies change their flight behavior with the identity, ampli-

tude and duration of olfactory stimuli.

5.2 results

Following [13], I constructed a tethered flight assay where flies are

tethered to insect pins and held in front of an airstream in the dark

(see Fig. 5.1for a picture). A paired olfactometer used four valves,

all upstream of vials containing odorant or control, to deliver short

pulses of either odorant or control. A PID behind the fly captured the

odorant delivered to the fly, and allowed me to record the stimulus

simultaneously with the behavior of the fly.

5.2.1 Flight responses to pulses of different odorants

Flies flapped their wings spontaneously when suspended in the de-

vice, creating the “hütchens” waveform on the photodetector cell (Fig.

5.2a). Each wingbeat cycle produced this characteristic bilobed wave,

and the height of the waveform was a proxy for the wing beat am-

plitude, and the frequency of this waveform was the wing beat fre-

quency. Flies tended to gradually decrease their wing beat frequency

when the airstream was turned on (Fig. 5.2b, left panel), though the

wing beat amplitude did not change as much ((Fig. 5.2b, right panel).

Switching airstreams in the absence of odorant did not evoke a strong
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Figure 5.1: Schematic of the tethered flight assay. A fly is tethered to a fine in-
sect pin and suspended below a Infra red (IR) Light Emitting
Diode (LED) (see top left for a picture). The wings of the fly
cast a shadow on two photo detectors below the fly, whose sig-
nals can be used to measure the frequency and amplitude of the
fly’s wing beats. An odorant delivery system (labelled “design
#1” can deliver either pulses of odorant or pulses of clean air to
the fly. Valves switch between two symmetrical airstreams, one
with odor (red) or one without, to deliver odorant to the fly with
minimal changes in airflow. A Photo Ionization Detector (PID)
sucks all the air and odorant delivered to the fly, allowing simul-
taneous monitoring of the behavior and the stimulus. Finally, ge-
netic strategies can be used to delete or replace receptors in the
fly. The time-series at the bottom shows the typical experimental
block, where a control pulse (with no odorant) is presented first,
followed by a test pulse with odorant.
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response, either with the control airstream (Fig. 5.2b, blue), or with

the “odor” airstream (Fig. 5.2b, red).

Having established that flies do not increase their WBF or WBA

in the absence of odorant, I then delivered 3 s pulses of four differ-

ent odors (Apple Cider Vinegar, ethyl butyrate, methyl salicylate and

ethyl acetate). Flies’ behavior to these odor pulses were measured

interleaved with responses to control pulses with no odorant. PID

measurement of odor stimuli, control stimuli with no odor, and WBF

responses of flies to these odors are shown in Fig. 5.2c. In all traces,

red curves correspond to test trials with odors, and blue trials corre-

spond to control trials with no odor. For all four odors tested, WBF

decreased in control trials where there was no odorant (Fig. 5.2c, blue

curves) and WBF increased transiently when odor was presented to

the flies (Fig. 5.2c, red curves). These results suggest that flies can

detect these odors, and respond to encounters with these odors by

increasing WBF.

5.2.2 Flight responses to pulses with different amplitudes

How does fly behavior vary with the amplitude of odorant signal pre-

sented? One possibility is that flies execute the same motor program

independent of the concentration of the odor detected, and that the

concentration of odorant detected triggers a navigational behavior,

but does not affect the details of that behavior. Another possibility is

that flies modulate their behavioral response based on the amplitude

of the stimulus they detect. To distinguish between the two, I deliv-

ered pulses of ethyl acetate with varying concentrations to flies and

recorded their flight behavior.

I generated three different amplitudes of ethyl acetate pulses by

diluting serially in Paraffin Oil (1/10, 1/100 or 1/1000). This serial
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Figure 5.2: Flight responses to different odorants. A fly is tethered to a fine in-
sect pin and suspended below a Infra red (IR) Light Emitting
Diode (LED) (see top left for a picture). The wings of the fly
cast a shadow on two photo detectors below the fly, whose sig-
nals can be used to measure the frequency and amplitude of the
fly’s wing beats. An odorant delivery system (labelled “design
#1” can deliver either pulses of odorant or pulses of clean air to
the fly. Valves switch between two symmetrical airstreams, one
with odor (red) or one without, to deliver odorant to the fly with
minimal changes in airflow. A Photo Ionization Detector (PID)
sucks all the air and odorant delivered to the fly, allowing simul-
taneous monitoring of the behavior and the stimulus. Finally, ge-
netic strategies can be used to delete or replace receptors in the
fly. The time-series at the bottom shows the typical experimental
block, where a control pulse (with no odorant) is presented first,
followed by a test pulse with odorant. In time traces of DWBF vs.
time, the mean WBF before the pulse (at t = 0 s) is subtracted
from every trace, and the mean DWBF is plotted with solid lines.
Shading indicates the standard error of the mean.
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Figure 5.3: Flight responses to ethyl acetate pulses of different concentrations. (top
row) Changes in WBF (top row) and changes in WBA (mid-
dle row) on presentation of ethyl acetate (red) or control (blue)
pulses. Bottom row shows the pulse kinetics and amplitudes.
Each column corresponds to a different concentration of ethyl ac-
etate (diluted 1/10, 1/100 or 1/1000 in Paraffin Oil). Black lines
in the first two rows indicate the duration of the pulse (100 ms).
In all time traces of DWBF or DWBA, the mean WBF or WBA
before the pulse onset (at t = 0 s) is subtracted from every trace,
and the meanDWBF and DWBA is plotted with solid lines. Shad-
ing indicates the standard error of the mean.
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dilution led to a ⇠ 10 fold change in the gas phase concentration de-

livered to the fly (Fig. 5.3bottom row). Pulses with largest amplitude

led to the largest changes in the WBF and WBA (Fig. 5.3first column),

while pulses with the smallest amplitude led to the smallest changes

in the WBF and WBA (Fig. 5.3last column). This suggests that (i) the

behavior seen here and in Fig. 5.2 is likely olfactory in origin, and (ii)

the concentration of the odor encountered modulates the amplitude

and kinetics of the behavioral response.

5.2.3 Flight responses to pulses of different durations

How does the duration of the odor pulse encountered affect behav-

ioral responses? Due to the relatively high speed at which Drosophila

fly (⇠ 30 cm/s) [172] and the relatively narrow width of odor plumes

that they would likely encounter [89, 119–121], flies may experience

contact and loss with a plume almost instantaneously [16]. This sug-

gests that flies may modulate their behavior even to very brief plumes

of odorant. To test this hypothesis, I presented flies with pulses of

ethyl acetate odorant with varying durations.

Flies modulated their WBF and WBA responses with the duration

of the pulse delivered, with the shortest pulses eliciting the smallest

and most transient increases in the WBF and WBA (Fig. 5.4, first col-

umn). As the duration of the pulse increased, responses grew larger

and more long lasting (Fig. 5.4). However, since the pulses delivered

using this olfactometer are not perfectly square (largely due to the

fact that the valve is upstream of the odor), pulse duration is also

strongly correlated with pulse amplitude in this experiment. Thus,

it is not clear if the change in responses seen in Fig. 5.4 are due to

changes in pulse duration, or due to changes in pulse amplitude, or

some combination of the two.



5.2 results 124

Figure 5.4: Flight responses to ethyl acetate pulses with different durations. (top
row) Changes in WBF (top row) and changes in WBA (bot-
tom row) on presentation of ethyl acetate (red) or control (blue)
pulses. Each column corresponds to a different duration of the
ethyl acetate (diluted 1/100 in Paraffin Oil) pulse. Black lines in
all plots indicate the duration of the pulse (30 ms - 3 s).

5.2.4 Trial-to-trial variations in behavioral response

So far, the data presented neglects the variation in behavior from trial

to trail and pools all trials to present gross averages (Fig. 5.2,5.3,5.4).

How do fly responses vary from trial to trial? Individual trials from

individual flies are very noisy, making interpretation of data chal-

lenging. I therefore averaged across different flies, and plot trends in

behavior as a function of trial number.

Fig. 5.5 shows how WBF and WBA responses vary from trial to

trial. This analysis reveals two features of the response that were not

evident in the averaged responses:
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Figure 5.5: Trial-to-trial variability in olfactory responses. WBF for odor (red)
and control (blue) presentations (top row). WBA for odor (red)
and control (blue) presentations (bottom row). Each row shows
responses averaged across 5 flies for a single trial. The odor used
is ethyl acetate (diluted 1/10 in Paraffin Oil). Note that for the
first trial, the odor evokes no response either in the WBF or the
WBA. However, in the fifth trial, WBF responses are large.
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a. Pre-stimulus WBF drops steadily from trial to trial. It is rela-

tively high in the first trial (⇠205 Hz) and drops to ⇠190 Hz by

the fifth trial.

b. Odor-evoked responses grow from trial to trial. Odor evokes no

response in the WBF in the first trial, but evokes a response by

the fifth trial.

One possibility for this behavior could be because laboratory reared

flies (Canton S flies were used in this assay) tend to fly much closer

to their maximum WBF at rest [13]. Thus, at the first trial, they are

unable to increase their WBF as they are already close to the max-

imum. By the fifth trial, however, because their resting WBF drops,

their dynamic range of response increases, manifesting as a large

odor-evoked response. Why does pre-stimulus WBF drop from trial

to trial? One possibility is that flies get progressively exhausted, and

reduce their wing beat frequency. Consistent with this possibility was

the observation that the probability of stopping increased with time

in the assay.

5.2.5 A better olfactometer

The olfactometer used thus far (as shown in Fig. 5.1) suffers from

design flaws. Amongst them are (i) non-square odorant pulses that

conflated pulse amplitude and duration, see §5.2.3; (ii) dilution in

paraffin oil that caused depletion of pulse amplitude over time and

made changing pulse amplitude cumbersome. Therefore, I developed

a new olfactometer design (Fig. 5.6).

In this design, MFCs are used to create an odorized airstream by

blowing air over a scintillation vial containing pure odorant. The con-

centration of the odorant in the airstream is controlled by varying the
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ratio1 of the air flows through the odor vial and through the dilu-

ent vial (green box in Fig. 5.6a). This odorized airstream feeds into a

dual three way valve, which switches between two states. Normally,

the valve diverts the odorized airstream to waste, and directs another

clean airstream to the fly. When the valve is activated, the odorized

airstream is directed to the fly, and the other airstream is directed to

waste. This switch is done using a single valve, that is constructed

to have equal resistances along all flow paths, minimizing airspeed

and pressure changes on valve operation. A second three way valve

switches between two other clean airstreams, which is used to deliver

control pulses with no odorant.

This design has several advantages over the earlier design. Using

gas phase dilution permits delivering odorant pulses of several dif-

ferent amplitudes using the same device, making it much easier to

acquire data as in Fig. 5.3. Fig. 5.6b shows pulses of various ampli-

tudes that are achieved with this olfactometer, by simply varying the

flow rates through the odor and clean vials. Note that these pulses

are much faster, and more square, as compared to the pulses deliv-

ered by the earlier design (cf. Fig. 5.2). In addition, by varying the

position of a teflon plug in the final glass funnel (see Fig. 5.6a), I can

vary the volume of the mixing space between different airstreams be-

fore delivery to the fly. This has the effect of changing the kinetics

of odorant pulses. In particular, odorants that have intrinsically fast

kinetics, like ethyl acetate, that generate square pulses, can be made

slower (Fig. 5.6b), with longer rise and decay times, resembling odor-

ants that have intrinsically slower kinetics [113]. Finally, using pure

odorants and gas phase dilutions ensures that the amplitude of the

odorant pulse does not decay over time, since the concentration of the

odorant in the vial does not change, as it would if it was diluted in

1 for more detail on gas phase dilution, see §2.2.3
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Figure 5.6: A better olfactometer. (a) Schematic of the redesigned olfactometer.
(b) Different pulse amplitudes generated by varying the ratio of
airflows through the odor and diluent vial (ratio in boxes). Differ-
ent pulse kinetics can be generated by varying the position of the
teflon plug in the glass funnel. (c) Constancy of pulse amplitude
over time. The odorant used here is ethyl acetate.
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Paraffin Oil. Fig. 5.6c shows the amplitude of a pulse of ethyl acetate

remaining relatively constant over ⇠30 minutes.

5.2.6 A tale of diminishing responses

How do flies respond to pulses of odorant delivered with this new

olfactometer? I delivered 200 ms pulses of ethyl acetate using this

olfactometer to flies and measured their WBA and WBF response.

Odorant pulses still elicited increases in the WBF, but the amplitude

of responses was much smaller compared to those elicited by pulses

delivered using the earlier design (Fig. 5.7a). While pulses of ethyl

acetate elicited a complex response in the WBA, comprising of tran-

sient responses followed by a slow increase, equivalent pulses from

the new olfactometer elicited a cleaner WBA response comprising

mainly of a slow decrease (Fig. 5.7a). On examining the WBA re-

sponses more closely, I observed two peaks in the WBA response that

occurred ⇠ 40ms after valve opening and closing, in both the control

and odorant pulse responses. The fact that these peaks occurred so

quickly after valve movement, and the fact that they existed in both

responses to control pulses and odorant pulses, suggested that these

peaks corresponded to a mechanical artifact associated with the mo-

tion of the valve.

To eliminate these mechanical artifacts, I redesigned the olfactome-

ter once more, taking care to balance airstreams flowing into the two

inlets of the two valves, and mechanically isolating the valves to pre-

vent shockwaves from valve closing and opening from propagating

through the entire device. These alterations to the design succeeded

in greatly attenuating the transients in the WBA response following

valve opening and closing (Fig. 5.8b, cf. Fig. 5.8a). However, responses

to pulses of Apple Cider Vinegar delivered by design #3 were smaller
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Figure 5.7: Flight responses to ethyl acetate pulses delivered by olfactometer design
#2. (a) Comparison of WBF and WBA responses to 100 ms ethyl
acetate pulses delivered by olfactometer design #1 (Fig. 5.1) and
design #2 (Fig. 5.6). (b) WBA responses show transient peaks
(black arrows) for both odor pulses (red) and control pulses
(blue). These peaks occur ⇠40 ms after valve opening and clos-
ing.

than those elicited by pulses delivered by design #2, which in turn

were smaller than those elicited by design #1 (Fig. 5.8c-e).

5.3 discussion

The flight of flies is a complex behavior, and depends on the inte-

gration of sensory cues from many modalities, including vision [58,

111, 117], mechanosensation [22] and olfaction [58, 101]. In this as-

say I attempted to unravel how various features of stimuli of one

modality, olfaction, affect the response of flies. This task was made

even more challenging by the fact that flies rely heavily on vision and

mechanosensation during flight [111, 117, 118, 137, 156, 172]. In or-

der to study how olfactory cues modulated flight behavior, olfactory

cues had to be introduced without introducing other cues, which is

a very hard problem. Since all olfactory cues need to be transported
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Figure 5.8: Flight responses to ethyl acetate pulses delivered by olfactometer design
#3 (a) Design #2 introduced transient peaks in the WBA response
⇠40 ms after valve motion, suggesting a mechanical artifact. (b)
Design #3 largely eliminates this mechanical artifact. (c-e) Com-
parison of responses evoked by Apple Cider Vinegar by Designs
#1, 2 and 3.

by moving airstreams, delivering any olfactory cue typically relies on

valves that switches airstreams. Earlier studies have shown that turn-

ing valves on and off introduces large, transient fluctuations in the

airspeed that occur on timescales as fast as a few milliseconds [40].

The ability of the fly to detect mechanical disturbances in airstreams

exceeded that of instruments at my disposal, making it hard to know

with certainty if responses observed here were not contaminated by

mechanical stimuli originating from valve switching.

A further challenge in this work was that flies did not fly reliably

in this assay. Compared to published studies [10, 13], I observed that

flies flew at lower WBFs. Flies also tended to stop flying intermit-

tently, making data collection arduous. The reasons for the poor flight
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ability of the flies tested here is not known, but it could be due to (i)

the fact that these experiments were conducted in the dark, which

is an atypical flying environment for flies, and (ii) the genetic back-

ground of the flies tested in this study.
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C O N C L U S I O N



6
C O N C L U S I O N

Although this dissertation still leaves many aspects of gain control

in Olfactory Receptor Neurons (ORNs) unexplored, I hope that it

will serve as a framework for further studies on how ORNs encode

odor signals and how they adapt their coding scheme in the face of

changing stimuli. This dissertation studied gain control properties of

one of three classes of ORNs [71], those expressing Olfactory Recep-

tors (ORs), and found two important features of ORN gain control in

these neurons: (i) gain control that followed the Weber-Fechner law;

and (ii) complementary kinetics that preserved the timing of odor

encounters despite front-end adaptation that slowed transduction re-

sponses. It is of significant interest if these two features are preserved

in the two other classes of ORNs. ORNs that express IRs and GRs

detect signals that are qualitatively different (like carbon dioxide),

or function in ways that are mechanistically distinct from ORs [181],

making it an open question if these ORNs show the same features of

gain control that I described in this dissertation. Intriguingly, a recent

study found that IR-expressing ORNs may not show any adaptation

to prolonged pulses, or pairs of pulses, but it is not clear if they also

do not follow the Weber-Fechner law [26].

We found that the slowdown in kinetics of response emerged as

a natural consequence of receptor binding and activation, using a

model that has been widely used to reproduce disparate phenomenon

like bacterial chemotaxis [7] or activation at the neuromuscular junc-

tion [5]. Whether these systems also show a slowdown in response

kinetics could be a question for further investigation, especially in

134
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cases like bacterial chemotaxis where the overall output of the sys-

tem is believed to exhibit kinetics that are invariant with the adapted

state [65].

A central principle in this dissertation is the importance of mea-

suring and precisely controlling odorant stimuli applied to ORNs,

which led to a quantitative understanding of how ORNs respond to

various statistical features of odorant stimuli. While pioneering stud-

ies in ORN response phenomenology that used simple odor stimuli

led to a general understanding of how ORNs response to various

odor stimuli [4, 19, 20], more recent studies [96, 113, 125], and this

dissertation, that have relied on more sophisticated stimuli have un-

covered new features of ORN response phenomenology that had not

been previously quantitatively understood.

We have used the Drosophila olfactory system as a model system

due to the large corpus of earlier studies that have established tech-

niques to record from these neurons [19], the locations of identified

neurons on the antenna [154, 155], and maps that link the morphol-

ogy of sensilla to the neurons they house to the receptors they express

to the odorant molecules they respond to [74, 100]. The framework

we have used here could also be used in other insect species, like

mosquitoes or tsetse flies, to understand how their primary olfactory

neurons detect signals that help them feed on humans.
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